The NA65/DsTau experiment: measuring the tau-neutrino production cross section

Mădălina Mihaela Miloi miloi@jinr.ru

Joint Institute for Nuclear Research - Dzhelepov Laboratory of Nuclear Problems University of Bucharest - Faculty of Physics

16 July 2021

Outline

- 1. Physics Motivation
- 2. Experimental technique
- 3. Current status
- 4. Prospects

Physics Motivation

The ν_{τ} interaction cross-section is known with less accuracy than other neutrinos.

- the poor accuracy is due to low statistics (only 9 ν_{τ} detected by DONuT, first that detected ν_{τ} ; 10 ν_{τ} detected by OPERA)
- the ν_{τ} flux in DONuT was roughly estimated by PYTHIA and the final result has 50% systematic error
- DsTau experiment aims to measure the tau neutrino production in proton-nuclei interaction and to decrease the systematic uncertainty in ν_{τ} produced flux to 10%
- the statistical error of the cross section is expected to be reduced to 2% in future experiments with large statistics of registered ν_{τ} (SHiP)

Study of charm production in proton-nucleus interactions

 expected 10⁵ events having pair charms

Experimental technique

The DsTau experiment will highlight the ν_{τ} from D_s leptonic decay $D_s \rightarrow \tau + \nu_{\tau}$ is the main source of ν_{τ} in the neutrinos beams

Figure: Double-kink topology of $D_s \rightarrow \tau \rightarrow X$ events.

Decay candidates are selected by the peculiar topology of the reaction Average kink angle of $D_s - \tau$ is 6.2 mrad \rightarrow **very challenging!**

 D_s (lifetime $5 \times 10^{-13} s$) is produced by 400 GeV protons from CERN-SPS on Tungsten/Molybdenum targets

400 modules with high accuracy tracking detectors: nuclear emulsion

beam monitor + target mover \rightarrow uniform exposure $3 \times 10^5 protons/cm^2$

Figure: DsTau emulsion plate with 2 emulsion layers on a plastic base

- angular resolution 0.35 mrad, spatial resolution 0.4 μm
- high density of tracks $10^5 tracks/cm^2$

Figure: Hyper Track Selector-HTS

- fully automatic
- scanning speed
 0.5m²/hour/layer
- angular resolution 2mrad

After scanning, the information about the tracks is in digital format

Pilot run 2018

- 30 modules were exposed
- performed to validate and justify the technique
- the emulsions have been scanned and are processed now
- development of the data processing algorithms

Preliminary results

Figure: grey-W, blue-emulsion, green-plastic

Figure: Example of DsTau reconstructed events

Our data:

- very big track + vertices densities
- extremely high resolution of modern emulsions
- automatic scanning by HTS

Prospects

- Physics run starts in October 2021, with W and Mo targets
- 4.6×10^9 protons, 2.3×10^8 proton interactions, 10^5 charm pairs, 1000 $D_s \tau$ decays
- Development of MC and data analysis tools

DsTau web site: https://na65.web.cern.ch/

DsTau paper:

https:

//link.springer.com/article/ 10.1007/JHEP01(2020)033

HAPPINESS IS

...studying physics.

Back-up slides

The DsTau experiment will highlight the ν_{τ} from D_s leptonic decay \rightarrow In DONuT experiment, 95% of ν_{τ} sources were from $D_s \rightarrow \tau + \nu_{\tau}$

Measurement of D_s differential production cross section:

$$\frac{d^2\sigma}{dx_F \cdot dp_T^2} \propto (1 - |x_F|)^n \cdot e^{-b \cdot p_T^2}, \tag{1}$$

where x_F is the longitudinal momentum p_L/p_Lmax and p_T is the transverse momentum. n and b are the parameters controlling the longitudinal and transverse dependence of the differential production cross section, respectively.

Fluka code	Particle	Mass (MeV)
-6	α	3720
-5	3-He	2809
-4	triton	2809
-3	deuteron	1875.612762 ± 0.000075
1	proton	938.272081 ± 0.000006
2	antiproton	938.272081 ± 0.000006
3	electron	$0.5109989461 \pm 0.000000031$
4	positron	$0.5109989461 \pm 0.000000031$
10	muon+	105.6583745 ± 0.0000024
11	muon-	105.6583745 ± 0.0000024
13	pion+	139.57039 ± 0.00018
14	pion-	139.57039 ± 0.00018
15	kaon+	493.677 ± 0.016
16	kaon-	493.677 ± 0.016
20	sigma-	1197.449 ± 0.030
21	sigma+	1189.37 ± 0.07

Table: Fluka codes for the particles found in both files.

Fluka code	Particle	Mass (MeV)
31	asigma-	1197.449 ± 0.030
33	asigma+	1189.37 ± 0.07
36	Xi-	1321.71 ± 0.07
37	Xi+	1321.71 ± 0.07
42	tau -	1776.86 ± 0.12
45	D+	1869.65 ± 0.05
46	D-	1869.65 ± 0.05
49	Ds+	1968.34 ± 0.07
50	Ds-	1968.34 ± 0.07
51	lambdaC+	2286.46 ± 0.14
57	antilambdaC-	2286.46 ± 0.14