

SPD PROJECT AT JINR Physics case

1st meeting of the SPD DAC

A. Guskov

Alexey.Guskov@cern.ch

21.5.2021

SPD AT NICA

 $p^{\uparrow}p^{\uparrow}:\sqrt{s} \le 27 \ GeV$

 $d^{\uparrow}d^{\uparrow}: \sqrt{s} \le 13.5 \ GeV$

 $d^{\uparrow}p^{\uparrow}: \sqrt{s} \le 19 \ GeV$

2021, January: CDR presented arXiv:2102.00442

2021, June: report of the International Detector Advisory Committee (under formation)

2022, January: Technical Design Report

2025 +: Operation

The SPD international collaboration is forming now

SPD – VS OTHERS

In the $p^{\uparrow}p^{\uparrow}$ mode:

Experimental	SPD	RHIC	EIC	AFTER	LHCspin
facility	@NICA			@LHC	
Scientific center	JINR	BNL	BNL	CERN	CERN
Operation mode	collider	collider	collider	fixed	fixed
				target	target
Colliding particles	$p^{\uparrow} p^{\uparrow}$	$p^{\uparrow} - p^{\uparrow}$	$e^{\uparrow}-p^{\uparrow}, d^{\uparrow}, {}^{3}\mathrm{He}^{\uparrow}$	p - p^{\uparrow} , d^{\uparrow}	p - p^{\uparrow}
& polarization	$d^{\uparrow}-d^{\uparrow}$				
	p^{\uparrow} - d , p - d^{\uparrow}				
Center-of-mass	$\leq 27 (p - p)$	63, 200,	20-140 (ep)	115	115
energy $\sqrt{s_{NN}}$, GeV	≤13.5 (<i>d</i> - <i>d</i>)	500			
	≤19 (<i>p</i> - <i>d</i>)				
Max. luminosity,	~1 (<i>p</i> - <i>p</i>)	2	1000	up to	4.7
$10^{32} \mathrm{~cm^{-2}~s^{-1}}$	~0.1 (<i>d</i> - <i>d</i>)			~10(<i>p</i> - <i>p</i>)	
Physics run	>2025	running	>2030	>2025	>2025

In the $d^{\uparrow}d^{\uparrow}$ mode we are unique

CINEMATIC RANGE

CONCEPT OF THE SPD PHYSICS PROGRAM

SPD - a universal facility for comprehensive study of gluon content in proton and deuteron at large x

Charmonia

Prompt photons

Open charm

Other physics

Other spin-related phenomena

6

GLUON PDFs

arXiv:2011.15005

GLUON PROBES AT SPD

GLUON PROBES AT SPD

not only J/ψ!

Sharp signal Relatively large cross section Model-dependent probability for $c\bar{c} \rightarrow [c\bar{c}]$

Challenging experimental requirements Model-dependent fragmentation functions

Largest cross section

Almost no fragmentation

Strong background especially at low p_T

CHARMONIA PRODUCTION

UNPOLARIZED GLUONS IN PROTON AT HIGH x

11

GLUON HELICITY FUNCTION $\Delta g(x)$

GLUON HELICITY FUNCTION $\Delta g(x)$: EXPECTATIONS FOR A_{LL}

W. Vogelsang

13

GLUON-INDUCED TMD EFFECTS : GLUON SIVERS FUNCTION $\Delta_N^g(\mathbf{x}, \mathbf{k}_T)$

Sivers effect: left-right asymmetry of unpolarized k_T distribution in transversely polarized nucleon

Sivers effect

- due to fragmentation of polarized quark

 A_N

Collins effect in the first approximation is absent for chamonia and prompt-photon production:

GLUON-INDUCED TMD EFFECTS: EXPECTATIONS FOR A_N

GLUON-INDUCED TMD EFFECTS : BOER-MULDERS FUNCTION $h_1 \perp g(x, k_T)$

 $gg \rightarrow D\bar{D}, \gamma\gamma, J/\psi\gamma, \dots$

The hadronic cross section can be written with corrections of order $\mathcal{O}(\infty/S)$ in the form [D. Boer, P. Mulders, C. Pisano, 2008]

$$\frac{d\sigma(pp \to D\bar{D}X)}{d\eta_1 d\eta_2 d^2 k_{1T} d^2 k_{2T}} = \frac{\alpha_S}{SK_T^2} \left[A(Q_T^2) + B(Q_T^2)Q_T^2 \cos 2(\phi_T - \phi_\perp) + C(Q_T^2)Q_T^4 \cos 4(\phi_Q - \phi_K) \right]$$
$$\frac{d\sigma(pp \to D\bar{D}X)}{d\eta_1 d\eta_2 d^2 k_{1T} d^2 k_{2T}} = \frac{\alpha_S}{SK_T^2} \left[A(Q_T^2) + B(Q_T^2)Q_T^2 \cos 2(\phi_T - \phi_\perp) + C(Q_T^2)Q_T^2 \cos 4(\phi_Q - \phi_K) \right]$$

$$egin{array}{lll} A:& f_1^q\otimes f_1^{ar q},\ f_1^g\otimes f_1^g\,,\ B:& h_1^{\perp\,q}\otimes h_1^{\perp\,ar q},\ rac{M_Q^2}{M_\perp^2}f_1^g\otimes h_1^{\perp\,g}\,,\ C:& h_1^{\perp\,g}\otimes h_1^{\perp\,g}\,. \end{array}$$

 $h_1^{\perp g} < 0$

UNPOLARIZED GLUONS IN DEUTERON AT HIGH x

Fig. 6. Gluon PDF in the deuteron and in the nucleon.

GLUON TRANSVERSITY **Agt(x)** IN DEUTERON

OTHER TASKS RELATED WITH THE PARTONIC STRUCTURE

Tensor structure of deuteron:

STSA with light hadrons contribution to global fit of quark TMDs

New structure functions: **b**₁,**b**₂,**b**₃,**b**₄

 $k = \overline{k}$ –

 $p = \overline{p} - \frac{\Delta}{2}$

GPD

PHYSICS OF THE FIRST STAGE OF **SPD** RUNNING

- Spin effects in p-p, p-d and d-d elastic scattering
- Spin effects in hyperons production
- Multiquark correlations
- Dibaryon resonances
- Physics of light and intermediate nuclei collision
- Exclusive reactions

• • •

- > Open charm and charmonia near threshold
- Auxiliary measurements for astrophysics

RATES FOR MAIN PROBES

. .

.

	$\sigma_{27\text{GeV}},$	$\sigma_{13.5\text{GeV}}$,	N _{27 GeV} ,	N _{13.5 GeV}
Probe	nb (×BF)	nb (×BF)	10 ⁶	10 ⁶
Prompt- $\gamma(p_T > 3 \text{ GeV/c})$	35	2	35	0.2
J/ψ	200	60		
$ ightarrow \mu^+\mu^-$	12	3.6	12	0.36
$\psi(2S)$	25	5		
$ ightarrow J/\psi\pi^+\pi^- ightarrow \mu^+\mu^-\pi^+\pi^-$	0.5	0.1	0.5	0.01
$ ightarrow \mu^+\mu^-$	0.2	0.04	0.2	0.004
$\chi_{c1} + \chi_{c2}$	200			
$ ightarrow \gamma J/\psi ightarrow \gamma \mu^+\mu^-$	2.4		2.4	
η_c	400			
$ ightarrow par{p}$	0.6		0.6	
Open charm: $D\overline{D}$ pairs	14000	1300		
Single D-mesons				
$D^+ \to K^- 2\pi^+ (D^- \to K^+ 2\pi^-)$	520	48	520	4.8
$D^0 \to K^- \pi^+ (\overline{D}^0 \to K^+ \pi^-)$	360	33	360	3.3

.

PHYSICS PERFORMANCE: GLUON PROBES (1 YEAR=10⁷ S)

PHYSICS PERFORMANCE: ACCURACIES

PHYSICS PERFORMANCE: ACCURACIES

TENTATIVE RUNNING PLAN

Physics goal	Required time	Experimental conditions	
	First stage	·	Ĵ
Spin effects in <i>p</i> - <i>p</i> scattering	0.3 year	$p_{L,T} - p_{L,T}, \sqrt{s} < 7.5 \text{ GeV}$	
dibaryon resonanses			
Spin effects in <i>p</i> - <i>d</i> scattering,	0.3 year	d_{tensor} - $p, \sqrt{s} < 7.5 \text{ GeV}$	
non-nucleonic structure of deuteron, \bar{p} yield			
Spin effects in <i>d</i> - <i>d</i> scattering hypernuclei	0.3 year	d_{tensor} - d_{tensor} , \sqrt{s} <7.5 GeV	\geq 5 years
Hyperon polarization, SRC,	together with MPD	ions up to Ca	of data taking
multiquarks			
	Second stage]
Gluon TMDs,	1 year	$p_T - p_T, \sqrt{s} = 27 \text{ GeV}$	
SSA for light hadrons			
TMD-factorization test, SSA,	1 year	p_T - p_T , 7 GeV< \sqrt{s} <27 GeV	
charm production near threshold, onset of deconfinment, \bar{p} yield		(scan)	
Gluon helicity,	1 year	$p_L - p_L, \sqrt{s} = 27 \text{ GeV}$	
•••			
Gluon transversity,	1 year	d_{tensor} - d_{tensor} , $\sqrt{s_{NN}} = 13.5 \text{ GeV}$	
non-nucleonic structure of deuteron,		or/and? $d_{tensor} p_T$, $\sqrt{s_{NN}} = 19 \text{ GeV}$	
"Tensor porlarized" PDFs			26

.

COST ESTIMATION

.

• •

	Subsystem	Option	Cost, M\$
SPD setup	Vertex detector:		
	– DSSD	VD1	9.4+6.5 (FE)
	– DSSD+MAPS	VD2	9.4+7.0 (FE)
	Straw tracker		2.4
	PID system:		
	 – RPC-based TOF 	PID1	5
	 Scintillator-based TOF 	PID2	4
	 Aerogel PID system 	PID3	5
	Electromagnetic		21.1
	calorimeter		
	Range system		14.2
	ZDC		2
	BBC		0.4
	Magnetic system		10
	Beam pipe		2
General infrastructure			5
Slow control system			0.8
Data acquisition system			1.6
Computing			10
TOTAL COST	VD2+PID2+PID3		94.9

+4.5 per year

SUMMARY

- ➤ The **Spin Physics Detector** at the NICA collider is a universal facility for comprehensive study of polarized and unpolarized **gluon content of proton and deuteron**; in polarized high-luminosity **p-p** and **d-d** collisions at $\sqrt{s} \le 27 \text{ GeV}$
- > Complementing main probes such as charmonia (J/ ψ and higher states), open charm and prompt photons will be used for that;
- SPD can contribute significantly to investigation of

O gluon helicity;

O gluon-induced TMD effects (Sivers and Boer-Mulders);

O unpolarized gluon PDFs at high-x in proton and deuteron;

- O gluon transversity in deuteron.
- 0...

➤ The SPD gluon physics program is complementary to the other intentions to study the gluon content of nuclei (RHIC, AFTER, EIC) and mesons (COMPASS++/AMBER, EIC).