SPD experimental setup

Alexander Korzenev, JINR/LHEP

Meeting with Detector Advisory Committee May 26, 2021

Outline

- Experiment. hall \& detector layout slide 2-5
- Magnetic system
slide 6-8
- Vertex Detector (VD)
slide 9-11
- Straw Tracker (ST)
slide 12-14
- Time-of-Flight (ToF)
- Aerogel
slide 15-17
- Summary for PID detectors
slide 18
- Electromagnetic calorimeter (ECal) slide 20-21
- Range System (RS)
- Polarimetry and luminosity contr. slide 24
- Zero Degree Calorimeter (ZDC) slide 25
- DAQ
slide 26
- Conclusions

Aerial view to NICA

SPD experimental hall

- Infrastructure development is ongoing: modernization of power supply system, upgrade of plants for liquid helium and nitrogen production, construction of new buildings
- Plans for the SPD hall for this year: complete work on the interior, make crane in operation

Layout of SPD

Assembling position

- Primary assembling of detectors can be done in the unloading zone
- Overhead traveling crane with a maximum lifting capacity of 80 ton
- Assembling can proceed while MPD takes data
- Beam-line will be isolated from the assembling by concrete blocks (thickness 2.3 m)

Beam position

- Rail system to transport the setup to the working position
- During data-taking the experimental site will be isolated from the unloading zone
- Unloading zone can be used for electronic barracks, counting house and so on

Superconductive magnetic system of SPD

SC cable used for magnets of Nuclotron

- 6 isolated superconductive coils
- Minimization of total amount of material
- Every coil consists of 60 turns of NbTi/CuNi cable with the 10 kA current
- Total current: $60 \times 10 \mathrm{kA}=600 \mathrm{kA} \cdot$ turn
- The same cable as used in Nuclotron magnets: hollow superconductor with the helium flows inside ($\sim 4 \mathrm{~K}$)
- Similar cryogenic system as the one of Nuclotron

Production site for superconductive magnets of NICA

- Vast experience in production of SC magnets
- 460 magnets to produce for NICA (buster + collider). $\sim 75 \%$ has been completed.
- Production of magnets for SIS100
- Full chain of cryogenic tests
- Prototype production for SPD can start at the end of next year
- Production for NICA will be finished next summer \Rightarrow $1 / 2$ of stand is unoccupied
- Option with external companies for magnet production is also considered

SC coil location with respect to ECal

CDR version / A.Kovalenko
Coil cross-section is $20 \mathrm{~cm} \times 20 \mathrm{~cm}$

Option for discussion / D.Nikiforov
Coil cross-section is $40 \mathrm{~cm} \times 20 \mathrm{~cm}$

Vertex Detector (VD)

Vertex Detector (VD)

- Inner tracking system of SPD: barrel + endcaps
- Reconstruction of D meson decay vertices
- 5 layers $=2$ DSSD +3 MAPS
- Double Side Silicone Strip (DSSD), $300 \mu \mathrm{~m}$ thickness, strip pitch $95 \mu \mathrm{~m}-281 \mu \mathrm{~m}$
- Monolithic Active Pixel Sensors (MAPS) designed and produced for ALICE, pixel size $29 \mu \mathrm{~m} \times 27 \mu \mathrm{~m}$
- Low material budget
- As close as possible to the beam pipe $5<\mathrm{R}<25 \mathrm{~cm}$
- Spatial resolution $<100 \mu \mathrm{~m}$
- Use of MAPS improves the signal-to-background ratio of D meson peak by a factor of 3

MC study: DSSD compared to MAPS+DSSD

Straw Tracker (ST)

- Main tracker system of SPD
- Barrel is made of 8 modules with up to 30 double-layers, with the $Z U V$ orientation
- Endcaps are made of 12 double-layers with the $X Y U V$ orientation
- Vast experience in straw production in JINR for several experiments: NA58, NA62, NA64; prototypes for: COZY-TOF, CREAM, SHiP, COMET, DUNE.

Straw Tracker (ST)

CDR version (end of 2020)

Layers 10x(ZUV)

- Majority of tubes should be oriented \perp to the bending plane
- Number of channels can be reduced by a factor of 3
- Less dead space due to covers \& electronics

PID: TPC compared to Straw in respect of the $\mathrm{dE} / \mathrm{dx}$ analysis

Inner pads: $S=5 \mathrm{~mm} \times 12 \mathrm{~mm}=60 \mathrm{~mm}^{2}$
Outer pads: $S=5 \mathrm{~mm} \times 18 \mathrm{~mm}=90 \mathrm{~mm}^{2}$
Maximum drift time $30 \mu s$

Straw of SPD

$\varnothing=10 \mathrm{~mm}$ straw: $\mathrm{S}=78 \mathrm{~mm}^{2}$
$\varnothing=5 \mathrm{~mm}$ straw: $\mathrm{S}=20 \mathrm{~mm}^{2}$

PID: Time-of-Flight (TOF)

Assembling room for the MRPC barrel of MPD in JINR/LHEP

Mechanics issues of the MRPC option for TOF/SPD

- MPD module has 17 cm thickness radially \rightarrow no space for another PID detector

- To be removable, the diameter of the TOF end-cap must be smaller than the one of the magnet coil
- Either large dead regions or conflict with coils

Aerogel counters for PID

- Identification based on Cherenkov light radiation
- Range of π / K separation is a function of refractive index n
- The design follow closely the one of KEDR (Novosibirsk)
- Low light yield ~6 p.e.
- Can be used only in endcaps since there is more space and it is a region of higher momentum particles

PID analysis in SPD ($\pi, \mathrm{K}, \mathrm{p}$)

π / K separation

- Short tracks ($\mathrm{R}<1 \mathrm{~m}$) to be identified by straw up to $0.7 \mathrm{GeV} / \mathrm{c}$
- Long tracks $(\mathrm{R}>1 \mathrm{~m})$ to be identified by straw+TOF up to $1.5 \mathrm{GeV} / \mathrm{c}$
- tracks with p>1.5 GeV/c to be identified by aerogel

Electromagnetic Calorimeter (ECal)

- 200 layers of lead (0.5 mm) and scintillator (1.5 mm)
- Size of one sandwich: $4 \times 4 \times 40 \mathrm{~cm}^{3}$
- Moliere radius is $\sim 2.4 \mathrm{~cm}$
- 36 fibers of one cell transmit light to $6 \times 6 \mathrm{~mm}^{2} \mathrm{SiPM}$
- Energy resolution is $\sim 5 \% / \sqrt{ } \mathrm{E}$
- Low energy threshold is $\sim 50 \mathrm{MeV}$
- Time resolution is $\sim 0.5 \mathrm{~ns}$
- Purpose: detection of prompt photons and photons from π^{0}, η and χ_{c} decays
- Identification of electrons and positrons
- Number of radiation lengths $18.6 \mathrm{X}_{0}$
- Total weight is $40 t($ barrel $)+2 \times 14 \mathrm{t}($ endcap $)=68 \mathrm{t}$
- Support structure will be made of carbon composite materials
- Total number of channels is $\sim 30 \mathrm{k}$

Energy deposition of one cell for MIP

Electromagnetic Calorimeter (ECal)

$A-A(1: 50)$

Range System (RS)

CDR version (end of 2020)

Update (May 2021)

Range System (RS)

Results of beam tests of RS prototype (10 ton, 4 k ch) at CERN

- Purposes: μ identification, rough hadron calorimetry
- 17 layers of Fe (3-6 cm) interleaved with gaps for Mini Drift Tube (MDT) detectors
- Total mass $\sim 800 \mathrm{t}$, at least $4 \lambda_{\mathrm{I}}$
- The design will follow closely the one of PANDA
- MDT provide 2 coordinate readout ($\sim 100 \mathrm{kch}$)
- Al extruded comb-like 8 -cell profile with anode wires + external electrodes (strips) perpendicular to the wires

Detectors for local polarimetry and luminosity control

- BBC (MCP+SciTil) at $z= \pm 1.4 m$
- MCP at $z= \pm 3.9 m$

Zero Degree Calorimeter (ZDC)

- ZDC will be integrated in the cryostat placed between two vertically deflecting magnets, 13 m from IP
- Sampling calorimeter with fine segmentation, 5×5 matrix
- SiPM light readout, about 1000 channels
- Readout based on electronics designed for the DANSS neutrino experiment at Kaliniskaya NPP
- Time resolution $\sim 150 \mathrm{ps}$
- Energy resolution for neutrons
- $50 \div 60 \% / \sqrt{ } \mathrm{E} \oplus 8 \div 10 \%$
- Neutron entry point spatial resolution 10 mm
- The main issue to solve: how to place the detector in vacuum cryostat of accelerator

Data Acquisition System (DAQ)

- Bunch crossing every $76 \mathrm{~ns} \rightarrow$ crossing rate 12.5 MHz
- At maximum luminosity of $10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ the interaction rate is 4 MHz
- No hardware trigger to avoid possible biases
- Raw data stream $20 \mathrm{~GB} /$ s or $200 \mathrm{~PB} /$ year
- Online filter to reduce data by oder of magnitude $\sim 10 \mathrm{~PB} /$ year

	CPU [cores]	Disk [PB]	Tape [PB]
Online filter	6000	2	none
Offline computing	30000	5	9 per year

Conclusions

- SPD (Spin Physics Detector) is a universal facility with the primary goal to study unpolarized and polarized gluon content of p and d
- Almost 4π coverage of acceptance
- Tracking by silicon vertex detector (VD) and straw tracker (ST)
- PID by TOF, Aerogel counters and dE/dx in ST
- EM calorimeter for $\mathrm{e}^{ \pm}$and γ identification
- Range system for the muon identification and rough hadron calorimetry
- Local polarimetry and luminosity control
- Magnetic system is an open issue for today
o Superconductive magnet: either solenoid or isolated coils
- If built in JINR, it has to be the isolated coils
- Inside or outside ECal
backup slides

Motivation for the RS end-cap update

- Sliding end-cap halves are more convenient for long-term use
- faster and safer to open
- no need to disconnect cables

ST assembling procedure

all will be done by hand

Two options for TOF (pros \& cons)

MRPC	SciTil
sophisticated production procedure	assembling is fast and easy
requires gas flow, HV (trips)	easier to maintain (no gas, only LV)
takes radially 17cm (MPD), no way for Aerogel	can be squeezed within $\sim 6 \mathrm{~cm}$, space for Aerogel
rectangular shape, large size (inconvenient for round end-caps)	small tile \Rightarrow can fit cylindrical shape
rad. length $\approx 0.14 X_{0}(M P D)$	rad. length $\approx 0.02 X_{0}$
σ_{t} is independent of $l_{\text {strip }}$	$\sigma_{\mathbf{t}}$ drops exponentially with $l_{\text {tile }}$
$\begin{gathered} S=\text { pitch } \times \text { length }=1.25 \mathrm{~cm} \times 40 \mathrm{~cm}=50 \mathrm{~cm}^{2} \\ N_{\text {channel }} \approx 10 \mathrm{k} \end{gathered}$	$\begin{gathered} S=\text { pitch } \times \text { length }=2.9 \mathrm{~cm} \times 9 \mathrm{~cm}=26 \mathrm{~cm}^{2} \\ N_{\text {channel }} \approx 20 \mathrm{k} \end{gathered}$
not sensitive to radiation	sensitive to radiation
well established technology (MPD, BM@N)	requires $R \& D$

- Both options are able to provide the resolution of ~ 60 ps
- Applying different options for barrel and end-caps will double expenses/efforts for: DAQ, Power supply, Slow control, calibration \& analysis

Summary: options for PID (TOF, Aerogel, Straw)

- Module takes 17 cm radially (no place for other PID detector)
- Choice for TOF end-caps is still opens

- The same choice of TOF for barrel and end-caps
- Lower thickness \rightarrow lower efficiency for Aerogel

- Module takes 17 cm radially (no place for other PID detector)
- Missing timing measurements in barrel

TOF/plastic + Straw expansion

- The same choice of TOF for barrel and end-caps
- Improvement of $\mathrm{dE} / \mathrm{dx}$ via increasing straw layers by 10

Plastic scintillator option for TOF/SPD

Electromagnetic Calorimeter (ECal)

CDR version (end of 2020)
Update (May 2021)

Electromagnetic Calorimeter (ECal)

Ячеӥка бочки EСа৷ SPD

Сектор бочки ECal SPD
Корзина бочки ECal SPD $\times 2$ шт.

Beam Beam Counter (BBC)

$$
z= \pm 1.4 \mathrm{~m}
$$

$z= \pm 3.9 m$

- BBC consists of inner and outer parts
- Inner part: Micro-Channel Plates (MCP) located outside the beam pipe in its own vacuum volume. Excellent time resolution.
- Outer part: plastic scintillator tiles with SiPM readout. Time resolution of 0.5 ns .

Unloading zone of MPD

