

δ¹⁵N in lichens reflects the isotopic signature of ammonia source

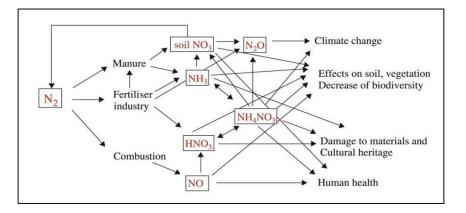
Silvana Munzi,

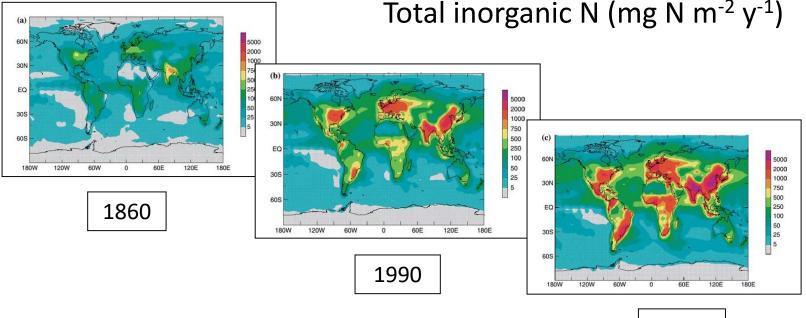
C. Branquinho, C. Cruz, C. Máguas, I.D. Leith, L.J. Sheppard, M.A. Sutton

ssmunzi@fc.ul.pt

Biomap 8 Joint Institute for Nuclear Research, Dubna, 02-07 July 2018

Ciência

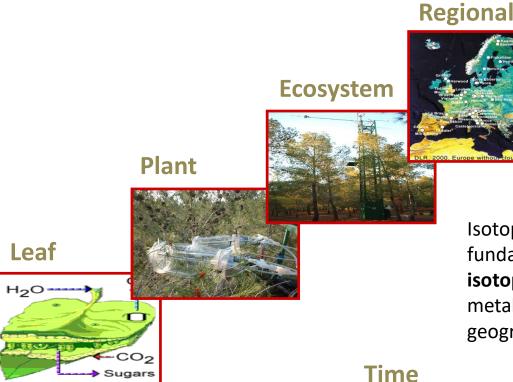




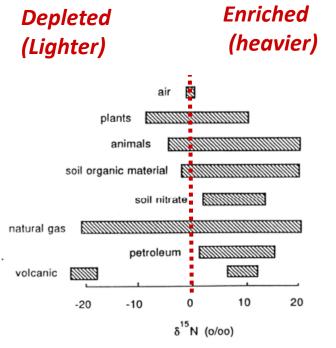
Ciências ULisboa

Total inorganic N (mg N m⁻² y⁻¹)

2050



Global


Isotopes integrate, indicate, record and trace fundamental ecological processes through the fractionation (e.g. isotopic enzymes, metabolism, altitude, temperature, land-use, geographic origin)

Space

Why such a large range of variation?

- **Differences in N sources**
- $N_{MIN} (NO_{3}^{-}, NH_{4}^{+})$

Rundel et al. 1988

Isotopes in Environmental and Health Studies, 2013 Vol. 49, No. 2, 197–218, http://dx.doi.org/10.1080/10256016.2013.748051

Source attribution of agriculture-related deposition by using total nitrogen and δ^{15} N in epiphytic lichen tissue, bark and deposition water samples in Germany

Ciências

ULisboa

Stefanie Boltersdorf* and Willy Werner

ISSN 1067-4136, Russian Journal of Ecology, 2012, Vol. 43, No. 3, pp. 185–190. © Pleiades Publishing, Ltd., 2012. Original Russian Text © L.G. Biazrov, 2012, published in Ekologiya, 2012, No. 3, pp. 170–176.

Stable Nitrogen Isotopes (δ¹⁵N) in Thalli of the Lichen *Hypogymnia physodes* along a Altitudinal Gradient in the Khangai Plateau, Mongolia

L. G. Biazrov

Atmospheric Environment 40 (2006) 498-507

Heathland vegetation as a bio-monitor for nitrogen deposition and source attribution using δ^{15} N values

R.A. Skinner^{a,*}, P. Ineson^a, H. Jones^b, D. Sleep^b, I.D. Leith^c, L.J. Sheppard^c

Chemosphere 85 (2011) 393-398

Organic pollutants and their correlation with stable isotopes in vegetation from King George Island, Antarctica

Caio V.Z. Cipro ^{a,*}, Gilvan Takeshi Yogui ^b, Paco Bustamante ^c, Satie Taniguchi ^a, José L. Sericano ^d, Rosalinda Carmela Montone ^a

Environ Monit Assess DOI 10.1007/s10661-014-3736-3

Lichens as a useful mapping tool?—an approach to assess atmospheric N loads in Germany by total N content and stable isotope signature

Stefanie H. Boltersdorf · Willy Werner

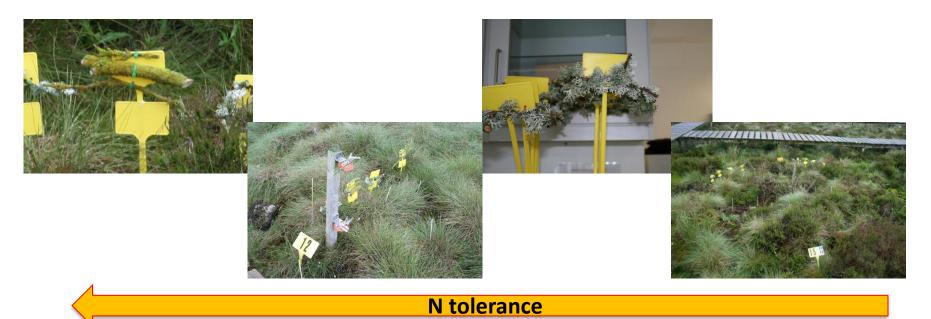
Whim Experimental Site – CEH

Dry Treatment

 $\rm NH_3$ released from a 10 m pipe at 1 m height when wind direction is 180–215° and speed is 2.5 m s⁻¹ $\rm NH_3$ concentrations measured by passive samplers (ALPHA)

Wet Treatments

Two N forms: $NaNO_3$ and NH_4Cl Three doses: 1, 3 and 7 times background value (8 kg N ha⁻¹ yr⁻¹)

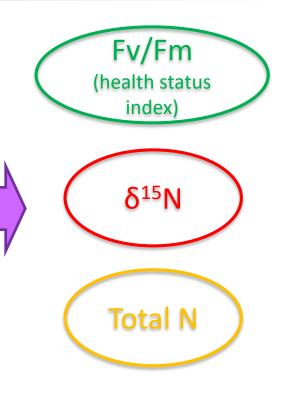


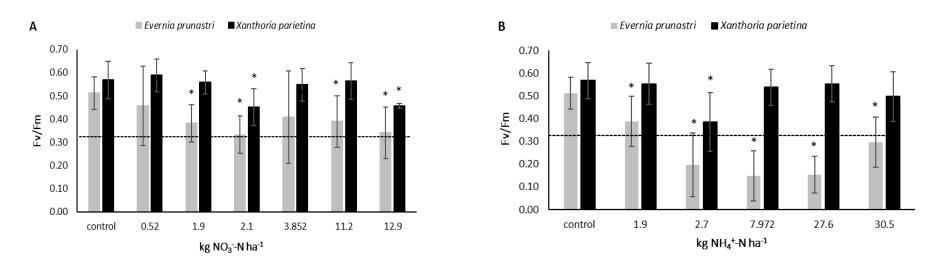
Xanthoria parietina Transplant – 10 weeks wet; 3, 6 and 10 weeks dry

C

Ciências ULisboa

> Evernia prunastri Transplant – 10 weeks wet; 3, 6 and 10 weeks dry



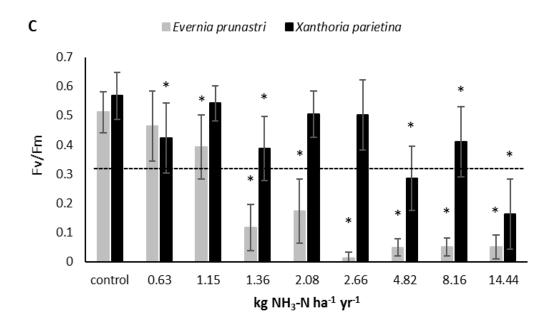

С

Ciências

ULisboa

Chlorophyll *a* fluorescence – wet deposition

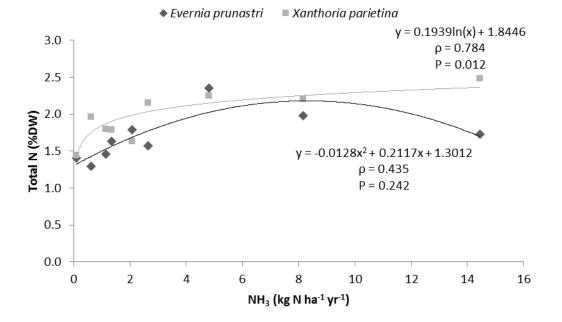
Dashed line represents the estimated lichen viability threshold for Fv/Fm


Modest effect of wet deposition on *X. parietina*, with occasional decreases in few treatments; in *E. prunastri* decreased in transplants already at low doses of ammonium and nitrate, even though samples remained viable in the case of NO₃⁻

Chlorophyll *a* fluorescence – dry deposition

С

Ciências ULisboa

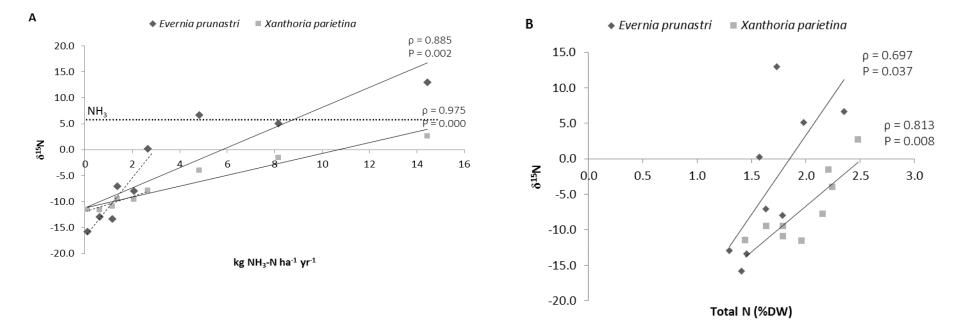

Dashed line represents the estimated lichen viability threshold for Fv/Fm

Exposure to mean concentrations of gaseous NH_3 equivalent to a deposition of > 1.2 kg N ha⁻¹ yr⁻¹ strongly affected photosystem II of *E. prunastri*

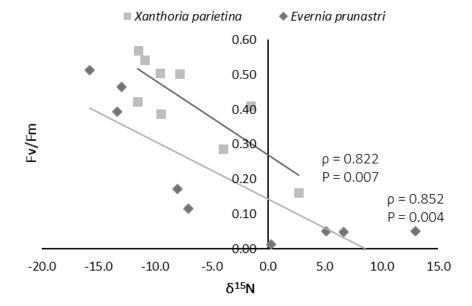
Xanthoria parietina exhibited decreased fluorescence values only at the highest depositions of ammonia (> 4.8 kg N ha⁻¹ yr⁻¹)

Ciências ULisboa

A similar increase in thalli N concentration when NH₃ was provided to both species


For *E. prunastri*, an initial increase was followed by a decrease in total foliar N above 5 kg N ha⁻¹ yr⁻¹, which appears to be reflective of a breakdown of this species at high NH_3 concentrations

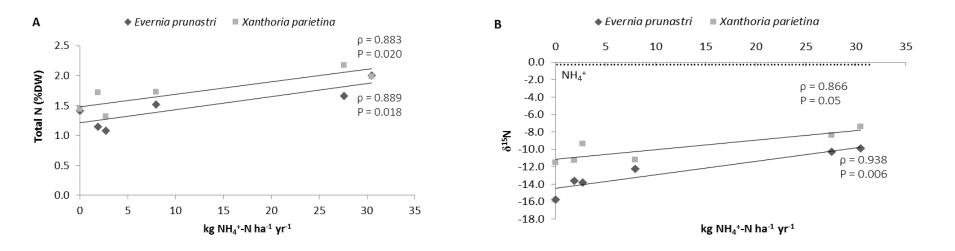
Ciências ULisboa



 δ^{15} N in lichens responded to the δ^{15} N of the released atmospheric ammonia

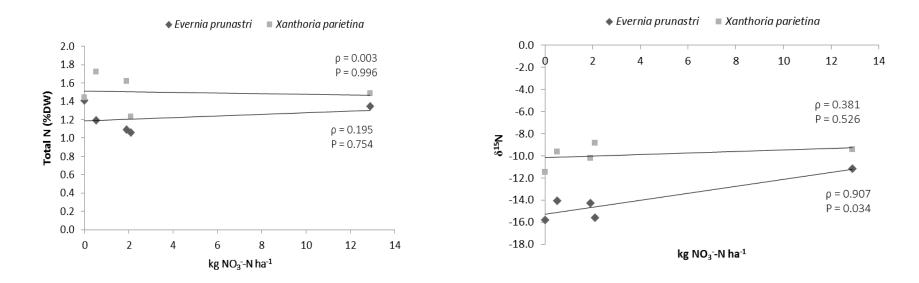
Ciências ULisboa

The physiological performance of lichens (Fv/Fm) is significantly correlated with $\delta^{15} N$



Ciências ULisboa

Wet deposition - NH₄⁺



Ciências ULisboa

Wet deposition - NO₃⁻

In case of NO₃⁻ only *E. prunastri* at the highest concentration showed a change in the isotopic signature

Ciências

ULisboa

Conclusion

Lichen $\delta^{15}N$ can be used as indicator of nitrogen pollution and a surrogate of nitrogen atmospheric composition. In particular, $\delta^{15}N$ in tolerant species like *X. parietina* reflects atmospheric concentration of NH₃.

Financial support for this work from:

Ciências

ULisboa

NitroPortugal project (H2020-TWINN-2015/H2020-TWINN-2015) ExpeER project ÉCLAIRE project (FP7-ENV-2011 nº 282910) CEH National Capability Programme on Air Chemistry and Effects Fundação para a Ciência e Tecnologia Investigador grant Fundação para a Ciência e Tecnologia project IF/00964/2013

Thank you for your attention!