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CBM physics goals and experimental challenges

CBM Collaboration, EPJA 53 3 (2017) 60 <7 ;\ TOF
T.Galatyuk, NPA982 (2019), update (2021) NI
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Main CBM physics cases: e  Tracking: Micro-Vertex Detector (MVD),
e  QCD matter equation-of-state at large baryon densities Silicon Tracking System (STS)
e  The production of strange quarks is sensitive to the properties of created =~ ®  Particle identification: Muon Chamber (MuCh),
matter in high energy nuclear collisions Ring Imaging Cherenkov (RICH),
o (Multi)-Strange particles Transition Radiation Detector (TRD),
e  Extend nuclei chart with hypernuclei measurements Time of Flight (TOF)
e  Collision geometry: Projectile Spectator Detector (PSD)
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To study rare probes CBM will operate at an unprecedented interaction rate, up to 10 MHz!


https://www.researchgate.net/publication/323880118_From_Strangeness_Enhancement_to_Quark-Gluon_Plasma_Discovery



https://www.youtube.com/watch?v=cjmUyp0My38

(Multi)-Strange reconstruction via weak decays

e Ahyperons are the most abundant strange baryons produced at FAIR energies
e  Collisions generated by URQMD and DCM-QGSM-SMM with Au+Au collisions at p, .= 12A GeV/c (Is = 4.93), mbias, 100k
° Using GEANT4 simulation, CA tracking, KFParticle within CbmRoot framework

; . 0 + -
A candidates reconstruction: A">p'm . Secondary .

/ ____________________________________ vertex Py

Primary
vertex

e  Combine all proton and pion tracks X topo
e  Signal from a lambda decay

e  Combinatorial background

Pr-
Variables :
° szrim - squared distance between the daughter track and
the primary vertex divided by its Covariance Matrix (CV) X primm .
X2 . { PV Xgeo DCA

e DCA - distance of closest approach between proton & pion tracks
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X geo™ squared distance between daughter tracks divided by CV

e L/AL - distance between primary and secondary vertex divided by CV

e cosa,cosa (future investigation)

2
A’ X topo

Selection criteria are optimized multi-dimensionally, non-linearly and in an automatized way with Machine Learning algorithms



Two implementations of KFParticle based reconstruction

KFParticleFinder

Software design driven by requirement of
very fast online particle selection to fit
CBM operation at the 107 interaction rate

Implementation:

vectorized libraries (SIMD technic)
Fixed set of decays selection criteria
all-in-one approach:

>150 decay channels

different decay topologies, etc.

PFSimple

Software design oriented on flexibility and modularity
for systematic performance studies and physics analysis

Implementation:

User controlled reconstruction algorithm
Stream reconstruction information and parameters from/to other
analysis tools

e Manual selection criteria optimization

Offers the possibility of flat trees for python
e  Optimize selection criteria using Machine Learning techniques for

individual decays,
or/and phase space (e.g. p; - rapidity - centrality)


http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/29538
https://git.cbm.gsi.de/m.zyzak/KFParticle
https://git.cbm.gsi.de/pwg-c2f/analysis/pf_simple

PFSimple

PFSimpleManager

[ PFS event info ] [ PFS tracks ]

PFS Container in

Analysis Tree
(AT)
Input

;{ AT to PFSCin Converter

PFS Input data

PFSCin

ATtoPFSC In Converter config

o

Magnetic field

\ 4

KFParticle
Package

PFSimple

PFS Container out

PFSImple config

PFSC out

_—
—  Dependencies

Data Flow

MC match data

N/

[ Rest of the data (unrelated to PFSimple info) }

More details on Git: Analysis tree, KFParticle, PFSimple
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PFSC out to AT
Converter
Include Analysis Tree
> (AT)
Output
>
>
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>

parameter name # source
Track parameters 6
XY, ZT, Ty, Q/P)
Track charge 1 from CE’.’M L1

tracking
Covariance matrix
21
of track parameters
Particle type hypotheses 1 TOF, MC PID,
(PDG code) no PID
Magnetic field (MF):
B=(B,B,B,) using CBM L1
parameterized with 9 . .
. — functionality
parabolic function:
Bi = (ai+bi(ri'ro,i)+Ci[ri'ro,i]2)
Reference POS!tIOI’] for position of the
MF calculation: 1 .
_ 1st hit
ro - (010:20)
Primary vertex from CBM
) 3 .

coordinates tracking

In total: 42 parameters

X,Y,Z (track position), T =dx/dz, Ty=dy/dz
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https://github.com/HeavyIonAnalysis/AnalysisTree
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/29538
https://git.cbm.gsi.de/pwg-c2f/analysis/pf_simple
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Distribution of signal & background in the variables
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Machine Learning (ML) SQ
e ML algorithms can perform a specific task by analyzing examples and can learn from data A N
e Variables associated with decay tracks are analyzed by the algorithm to classify A candidates NN
e  Various ML algorithms tested: (SVM, Regression, MLP, Decision Trees, Gradient Boosting t

(GB), Extreme GB (XGB))

o  XGB works better in terms of performance

7 /l' \\; \\1/\ as h“ S
CBM Au+Au collisions @ 12A GeV/c

Gradient Boosting (GB)

e  Boosting combines weak learners (error rate <50%) to make a

Jerome Friedman. strong learner (error rate <25%)
’ e Decision trees (weak learners) are combined together to make a
empirical evidence shows that taking GB alaorith
lots of small steps in the right direction algorithm
results in better predictions with the e In each step a new tree is used to improve the previous prediction
Testing Data e XGB is an extension of GB with:

o  better control over overfitting
o  parallel processing

o additional features

Following the implementation of the ALICE Collaboration ML package



https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/
https://github.com/dmlc/xgboost/
https://statweb.stanford.edu/~jhf/ftp/stobst.pdf
https://github.com/hipe4ml/hipe4ml
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XGB implementation for A

e UrQMD sample is taken as experimental data (pure background)
e DCM-QGSM-SMM sample as simulated data (pure signal)

e A candidates are cleaned by removing nonphysical values

e Acandidates are divided into train and test samples

Cleaning

Test and train
sets

A\ candidates

Pure background
(UrQMD)

XGB Model

Background is selected + 50 away from the A peak mean



Counts

XGB Model evaluation

Model trained on the train sample is applied to the test sample
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True positive rate = tpr; Signal = S ; Background = B

S classified as S
S classified as S+ S classified as B

f r— B classified as S
pr = B classified as B+ B classified as S

tpr =

True Positive Rate

Optimize A candidates selection for significance

1.0/ ( =
-
0.6
0.41 P :
ROC curve train (area = 0.9983)
—— ROC curve test (area = 0.9982)
021 gt e Random guess
Best Threshold test set = 0.9625
® AMS=2.85
0.0 : : : :
0.0 0.2 0.4 0.6 0.8

False Positive Rate

1.0

Threshold on the ROC (Receiver Operating Characteristic) curve
which maximizes Approximate Median Significance (AMS)

on the test sample is our Best Threshold

AMS= 2 [(tpr + fpr) log(1 + tpr/fpr) -

tpr]
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https://higgsml.lal.in2p3.fr/files/2014/04/documentation_v1.8.pdf
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XGB performance for A candidates selection
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Preserve smooth background shape after XGB selection

Optimal XGB probability (0.96) is applied
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Yield Extraction: fitting procedure Divide (p.y) phase space Into 15x15 bins

CBM Performance -
DCM-QGSM-SMM, Au

w

AGeV/c

Lorentzian function is used for signal and 2nd order polynomial for background:

N
N

: B (1/2)T
Fit(m) = A(m—m0)2+(F/2)2 + pol2(m)

pr (GeV/c)

1.  Exclude signal region (m<1.108 & m>1.13) and fit background with pol2(m)
2.  Use background fit parameters as initial values for next iteration, where

signal (Lorentzian) fit function has fixed m, = 1.1156GeV/c? and width I'=0.0014 GeV

3.  Use fit parameters as initial values for unconstrained fit to the whole inv. mass range

Step 1 Step 2
C o 400
: : £
o5l 300/~ 3
C 250 — 300}—
20 r
L 200 — Invariant mass of lambda E— Ty
15— r 0.5% 0.0014 x+Dx 200F— A 05T
- C (m-1.1 15683) 0.25x 0.0014% I (m-mﬂ}2 +0.2512
[ 150
Invariant mass without A peak | | . B+CxsD)
10 L C CBM performance
C 100 100 —
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https://drive.google.com/drive/folders/1XwRNqexBVlvBravCq4jxBlEMym2Y3SxD?usp=sharing

Results: acceptance and efficiency of A reconstruction

XGB algorithm efficiency

< 3 —0.8
S B CBM performance
8 2.5 DCM-QGSM-SMM, Au+Au @ 124 GeV/c -0.7
z,_ - ML algorithm Efficiency = Apeconstructea / Ar —0.6
2: = 1011877151215 = 0.669 o5
1.50 0.4
1: 0.3
- 0.2
0.57 Snent
M %
OO I I | 0.5 L 1 e . L 1 O

XGB algorithm shows high efficiency ~ 80%

e Reconstructed = reconstructed + selected A
e  Reconstructable = both daughters are reconstructed

Acceptance and efficiency

(T 3r —0.35
S r CBM performance
82_5:—DCM—QG$M-SMM, u+Au.@.12A.GeV/c —0.3
\;,_ - Total Efficiency = A, WL - 0.5
2r =101187 /616233 0.164
E —0.2
1.5
* 0.15
1
0.1
0.5 0.05
1} 1 1 1 ‘ 1 1 1 [l

0 0.5 1 1.5 2

2.5 3

Lab

¥

Total reconstruction (acc x efficiency) ~ 35%
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Results: efficiency and acceptance corrected A yield

Corrected Avyield

—~ 3 —10000
O [ cBM performance
> F 19000
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Ot —18000
e b URQMD / Efficiency DCM-QGSM-SMM
o of —7000
- 6000
1.5F 5000
- 4000
1; 3000
0_5? 2000
- I 1000
% 05 1 15 '2"'25"},"3 0
Lab

XGB selection, yield extraction procedure, and efficiency correction allow to recover true A yield

(Corrected Avyield) / true A

/\0\ _ CBM performance
> -
82.5:URQMD Au+Au @ 12A GeV/c —1
= [ URQMD 1
o  Efficiency DCM-QGSM-SMM  Simulated Agqmp
2k —0.8
1.5F 0.6
1t 0.4
0.5F 0.2
% 05 1 15 2 28,3 °
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Results: Efficiency and acceptance corrected yield (p,/y projections)

Yield

CBM Performance
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Summary and outlook

e A\ baryon reconstruction in CBM@FAIR with Machine Learning techniques
o  Optimization of selection criteria performed via XGB
o High signal purity and efficiency achieved

e Avyield extraction and efficiency
o Yield, extracted after XGB selection and (acceptance x efficiency) corrected
is compatible with initial model spectra

Outlook

e Include more variables to improve XGB selection and signal to background ratio
e Study different A samples to minimize overfitting and investigate stability
o multi-differential (p;, y, centrality) XGB selection, test and training

e Evaluate systematic uncertainties
o XGB selection variation
o Yield extraction: variation of fit ranges, background and signal fit functions

e Apply developed procedure for multi-strange hadrons and hyper-nuclei

17
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https://docs.google.com/file/d/17B81HW8bbKM7Hb_QwyLKyiD_wc77aT3e/preview

Backup slides

19



104

10°

Counts (log scale)

104

Counts (log scale)

Counts (log scale)

10%

102

== Signal

CBM Performance

DCM-QGSM-SMM, Au+Au @ 12 AGeV/c

112 1.14 x 118
Mass in GeV/c?

104

103

10?

= Signal

CBM Performance

DCM-QGSM-SMM, Au+Au @ 12 AGeV/c

112 114
Mass in GeV/c?

XGB implementation for A

e UrQMD sample is taken as experimental data (pure background)
e DCM-QGSM-SMM sample as simulated data (pure signal)

Full Background
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e A candidates are cleaned by removing nonphysical values

° N\ candidates are divided into train and test s
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3 #

\l ; \‘V‘ S
YOURE STILLHERE?,

memegenerator.net

Well go and check out the following
Two easy to use jupyter notebooks are available on the following links
o  hitps://colab.research.google.com/drive/10fD3XNnf_0qt12DiAzIQunbW7IVEQqQIE?usp=sharing

o https://colab.research.gooqgle.com/drive/1yV3xboB67trorfOKy1-VLT1kLxYdN6dn?usp=sharing

our code on github

21


https://colab.research.google.com/drive/10fD3XNnf_0qt12DiAzlQunbW7IVEqqIE?usp=sharing
https://colab.research.google.com/drive/1yV3xboB67trorfOKy1-VLT1kLxYdN6dn?usp=sharing
https://github.com/CBM-ML

Applying the model on the URQMD data set

The original sample's Invariant Mass along with mass after selection of XGB (with a cut > 0.9802)

i before selection 0 XGB

8000

6000

Counts
Counts

4000

2000

1.14
Mass in [Gizv]
[4

The threshold on the ROC curve which maximizes AMS on the
test data set is applied on the URQMD 100k events data set

XGB selected A candidates with a cut of 0.9447 on the XGB probability distribution
1 I I

J " XGB selected As
7000
False positives =
6000 o (MC =0) N
background in
the distribution
5000
"
€ 4000
3
o
O
3000
2000
1000
0
1.105 1.110 T:115 1.120 1.125 1.130 1.135 1.140

Mass in [G:;ZV]

ML does not cut the background in an unexpected way, therefore,

not introducing any bias
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Yield Extraction: The Fitting Procedure

pr [GeV/c]

e  Divide the data into p,-y bins =iy
Applied fitting to all the bins individually i
e  Apply a mass cut of 1.13<m<1.108 for a 2nd order pol background fit ool
e  Get the fit parameters and use them as initial fit parameters for the E
whole mass range, the fitting function is 4 0.5x0.0014 L B4 Cm+Dm: O
(m—1.115683)*+0.25x0.0014° L

Get the fit parameters and use them as initial parameters L Invariant mass without A peak
) , . 10—
The final fit function 4 o.gr _ 4+ B+ Cz+ Dz? ’
(m—myg)~+0.25T %

B+Cx+Dx?
57
y-pr plot for signal candidates (MC=1) with BDT cut = 0.9447 . :I P r ] P [ 3 L[ L P g i
. 0 1.1 T2 1.14 1.16 1.18

2.4

Loy
©

L
[N}

0.6

1754

pdf of pT rapidity bins divided data, with fitting

Mass in [GeV/c 9]



https://drive.google.com/drive/folders/1XwRNqexBVlvBravCq4jxBlEMym2Y3SxD?usp=sharing

Phase diagram

Alessandro D. Falco, CPOD-2021
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https://indico.cern.ch/event/985460/contributions/4264615/attachments/2211234/3742919/adf_cpod.pdf
https://indico.cern.ch/event/985460/contributions/4264615/attachments/2211234/3742919/adf_cpod.pdf
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Multi-strange yields

AGS SPS

(=]

Vs Run time R, kHz X X* Q*
HADES (Ag) 2.6 GeV 4 wks 10 2.5x10°
MPD S1 11 GeV 10 wks 5 1.5x108 8x10* 1.5x10*
CBM 3.8 GeV 1 wk 1000 4x10° 5x10° 3.3x10°

|

— RVUU YY&N E
— UrQMD heavy N*—EKK

—

2

3 4567810 20 30 40
Collision Energy {sy, (GeV)

Compilation TG, QM2018

C. Blume, C. Markert, PPNP 66 (2011)
HADES Coll., PLB 778 (2018)
HADES Coll., PRL 103 (2009) 132301

RVUU: F. Li et al., PRC 85 (2012) 064902
UrQMD: J. Steinheimer et al., J.Phys. G43 (2016) 015104

ART: C.M. Ko et al., PLB595 (2004) 158-164
A. Andronic et al., NPA 772 (2006)

F. Becattini et al., PRC69 (2004) 024905
E. Seifert et al., PRC97 (2018)
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Hypernuclei yield: CBM projections
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c 40001 e o
g 3000
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3000 = 1 OOk 2000
2000 i ‘ 1000
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C
0
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Data cleaning/skimming

The data contains some entries which does not make sense, so we clean it by pre cuts

p<20

pz>0

0<X?primpos < 1x10°

0<I/dI<8000

abs (x,y) <50

-1<z <80

0<X?geo < 10°

cosineneg>0.1

1<eta<6.5

O<distance< 100

0<X?primneg<3x10’

Remove nan, infinite

1.07<mass<1.3

<80

0<X?topo< 10°

0<I/d1<8000

Removes 3.2 % signal candidates from a set of 10k events (AU 12AGeV mbias URQMD)

But also removes 57 % background

mass can’t be negative and we select mass greater or equal to the mass of proton and pion

Fixed target experiment, target position: (0,0,0) 28

X? can’t be negative



Gradient boost: regressor, in simple words

Using the

GB: Trees predicting residuals and a 2 samples
learning rate to prevent overfitting X, X,
Variable, 1 2
variables | Variable, 3 4
Variable, 5 6
target | VY 1 0
First prediction | Average ofy =y’ 05 |05
Pseudo residuals | Residual =y -y’ 05 |-05
Predicts this L/,Tree=h1 0.5 -0.5
2nd prediction | Predicted=y” =y’+tree 1 0
‘W_Learmng rate=0.1 0.1 0.1
3rd prediction| New prediction=y”’=y’+ 0.1* (tree) 0.55 | 0.45

New 0.45 | -0.45
residuals=y-y’”

Tree 2 = h2 0.45 | -0.45

Newest 0.595 | 0.405

I

prediction=y"” =
y”’+0.1*
(tree 2)

Goes on

Step towards
the main target

Further reading
https://xgboost.readthedocs.io/en/latest/tutorials/model.html



Detailed Explanation GB

1. Input: Data {(x,y,)}"._, and a differentiable Loss Function L(y,,F(x))
If we choose L =% {y, - F(x)}?
Then
d/idF(x) {2 {y, - F(x) 1%} =(-(y,-F(x))) = F(x)-y, =-(residuals)

We minimize this F(x)-y, for all values

7 Fz) — i =0

A predicted value which can minimize this sum is the average
Sy,
F(CL‘) — £ 7t =average = F (x)
n

2. Fit m = 1 upto m=M number of trees

a. Compute o OL(y;,F(x;))
- OF (z;) atF(x)=F__(x) fori=1,...n
since first iteration so F(x)=F (x) -d/dF(x) {%2 {y, - F(x) ¥} =(-(y-F(x))) Residuals

30



Detailed Explanation GB

e Fitm =1 upto m=M trees

OL(y, ,F(x;
a. Compute Tim — — (y“ ( Z)) at F(x)=F__(x) fori=1,...n
b. Fit a regression tree to the r,  values and create terminal regions ij, for j=1,..,d  (leaves but not with output values)

c. Determine the output value for each leaf:
for j=1 ,--J . compute
again will turn out to be average if L="2 {y, - F(x) ¥

d.  Update Vim = argmind . p L(yi, Fpo1(zi) + )
v is learning rate and the equation in the box is the tree we just'made
We started with F, so

Fon(z)=Fy, 1(z) +v]D]

e Output F,(x) (The final classifier)

JIm
pa) YimI(x€Rjm )

Fi(z) = Fo(z) + v 30" YjmI(zeRjm)
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