On π^+, π^- identification in Ar run

K.Mashitsin, S.Merts, S.Nemnyugin

03/10/2021

K. Mashitsin

- ${\scriptstyle \odot} \,$ Identifying $\pi^{\pm}, {\rm K}^{\pm}$
- ${\ensuremath{\, \bullet }}$ Estimation of the $\pi,$ K mesons production cross section

- Particle identification in the BM@N experiment
- Filtering experimental data
- Comparison of Monte Carlo data and experiment
- Adding realistic effects to event simulation
- Summary

Silicon + GEM (Gas Electron Multiplier)

Allows to reconstruct the momentum along the trajectories of charged particles. Rigidity = ρ/q

TOF(Time-Of-Flight detectors

Allows to calculate the velocity taking into account the measurement of the time. $\beta = l/tc$

K. Mashitsin

Input data

Exp data

BM@N

- Beam: Ar @ 3.2 AGeV
- Target: C, Al, Cu, Pb, Sn

Experimental data are noisy therefore selection procedures are needed

K. Mashitsin

Selection criteria for reliable experimental tracks:

- Vertex in range
 - $V_x \in (-2, 4)$ cm; $V_y \in (-6, -1)$ cm; $V_z \in (-5, 5)$ cm.
- Minimum 1 hit in silicon stations and min 4 hits in GEM.
- The track is confirmed in the first drift chamber

For the TOF detector, we associate the track with the <mark>hit</mark>, and for the DCH with the **track segment**

- Propagate each track to the detector plane
- Create all track-to-hit (track-to-track) connections
- Fit residuals and get $\mu_{\rm X}, \mu_{\rm Y}, \sigma_{\rm X}, \sigma_{\rm Y}$

The TOF700 detector was aligned for each module separately.

BM@N Time calibration

After the coordinates were aligned, the time was calibrated From $\delta\rho$ and δt calculate δm

Time calibration

Calculate and fit residuals

$$\Delta t = \frac{L}{c}\sqrt{1+\left(\frac{m}{\rho}\right)^2} - t_{ex\rho}$$

BM@N

Re-extrapolating

Propagate the inner track through its hits in silicon and GEM.

Matching

Tracks from the magnet are matched with the DCH tracks and hits in the TOF detector.

At this stage, we use the $\sigma_{\rm X}$ and $\sigma_{\rm Y}$ obtained from the alignment procedure.

- The track is extrapolated to each hit (track) in the detector plane
- Calculate residuals $\Delta X = x_{track} x_{hit}; \Delta Y = y_{track} y_{hit};$
- Find the nearest hit (track) in $\pm 3\sigma_X$ and $\pm 3\sigma_Y$

Back propagation

Extrapolate track from TOF detector to the vertex.

- Get time of flight from a TOF hit
- Calculate velocity $\beta = l/tc$

• Save track parameters if it belongs to the vertex range

13/27

Before/After

BM@N

K. Mashitsin

We will compare MC (blue line) and Exp (red line) on the Ar + Cu data.

Data parameters

- Number of hits in Silicon and GEM tracks
- Station efficiency
- Residuals

K. Mashitsin

Comparison of Exp and MC

Monte Carlo

- Generator: DCMSMM
- System: Ar + Cu
- Energy: 3.2 AGeV
- Selected tracks only

Exp data

- System: Ar + Cu
- Energy: 3.2 AGeV
- Selected tracks only

The efficiency of a station depends on 1)Tracks passed through the station and 2) Tracks in acceptance.

- A list of non-working strips was received
- Strips from this list were disabled during the simulation stage.

Initially, the peaks of the vertex coordinates are very narrow and

K. Mashitsin

BM@N

Lorentz shifts simulate the displacement of electron avalanches in a magnetic field. Residuals become wider. Gem station 4; Without Lorentz shifts

K. Mashitsin

Monte Carlo efficiency remains high...

Reasons for high efficiency

Because we have a large number of **"good"** MC tracks that **passed the selection**.

MC data is blue and Exp data is red

The experiment is dominated by events with one track, and in Monte Carlo there are many events with several tracks.

Efficiency constant have been added to the reconstruction

If the randomly generated number is higher than the station constant, then the hit for this station is not recorded.

K. Moshitsin

Monte Carlo's behavior repeats the experiment

- Calibration of the detector by coordinates and time
- Algorithms for filtering experimental data have been implemented
- Realistic effects have been added to the modeling process
 - Smearing Vertex
 - Lorentz Shifts
 - Dead strips, hits
- Parameters of MC tracks inside the magnet repeat the experimental data.

BM@N

- Estimate efficiency of matching
- Identify π , K mesons in experimental data
- Evaluate the efficiency of detectors through simulation
- Normalize the number of identified particles to the efficiency of the detectors and tracking
- Evaluate yeilds of identified $\pi^{\pm}, \mathsf{K}^{\pm}$

Thank you for the attention!

Silicon Tracks (Min 1 hit)

Gem Tracks (Min 4 hits)

$$Efficiency_i = \frac{Numerator_i}{Denominator_i}$$

if number of hits is min

if track in acceptance station i: Denominator_i + + if the number of hits is greater than the min if hit confirmed in station i: Numerator_i + +; Denominator_i + + if track only in acceptance station i: Denominator_i + +

K. Mashitsin