

GEM+CSC upgrade

Andrei Galavanov on behalf of BM@N Collaboration

8th Collaboration Meeting of the BM@N Experiment at the NICA Facility, 03.10.2021

BM@N experiment

Full planes configuration inside the SP-41 magnet

Active area of the GEM tracking system $\sim 9.5 \text{ m}^2$. Space for installation and alignment is limited by the aperture of our magnet. Required some mechanical system for detectors mounting.

- Development of the mechanics design for GEM planes precise installation inside the magnet was done by "Pelcom" (Dubna) finished;
- Production of the mechanics is currently performed by "Pelcom" (Dubna) 09.2021. Delay on 2 weeks - difficulties with some technological process during manufacturing.

Assembly of the stand for long-term GEM tests

Tests of 1632*390 mm² detectors - finished Tests of 1632*450 mm² detectors - finished

Trigger system – ten $10*200 \text{ cm}^2$ scintillation detectors

The broken sector in GEM-detector №17. Sent this detector to CERN for repairing. On next two week it will delivery back to JINR.

Gas system

Gas system requirements :

- stable flow and mixture parameters;
- 7 independent channels to each GEM-plane;
- reducing and control oxygen impurities in gas mixture;

Gas mixture: Argon (80)/Isobutane (20)

Distribution panel:

- 10 channels gas collector;
- On 8 channels rotameter for gas mixture flow control (7 GEM planes + 1 channel to test room);
- One channel for pressure control;
- One spare channel.

Gas mixer.

Flow rate is 3 l/h on each channel – 21 l/h for seven channels.

Now (max): 12 l/h for Argon + 2,4 l/h for Isobutane Need to change the mass flow controllers at gas mixer on more productive.

Gas system. Oxygen measurement

Polyamide tube

Mixer 🔶 🔸

After one GEM

Tube length	O_2 , ppm (flow = 3 l/h)	O_2 , ppm (flow = 6 l/h)
7,6 meters	69	50
50 meters	130	76

	O_2 , ppm (flow = 3 l/h)	O_2 , ppm (flow =6 l/h)
Mean	477	238

3 l/h: increase on 408 ppm; 6 l/h: increase on 188 ppm

Coincidence level

	Analyzer 1, ppm Analyzer 2, ppm	
50 meters tube, flow = $3 l/h$	129	128

	Analyzer 1, ppm	Analyzer 2, ppm
3 l/h	217	4045
6 l/h	117	1610

Flow = 3 l/h: each GEM-detector adds around 550 ppm O_2 Flow = 6 l/h: each GEM-detector adds around 220 ppm O_2

Gas system. Gas mixer check

Choose the value of flow \rightarrow connect the gas pipe with cylinder \rightarrow fill the cylinder by water \rightarrow measure the time it takes to displace the certain volume of water by gas mixture.

	Mixer, cc/min	20	30	40	60	80	
Argon	Measure, cc/min	23,6	34,4	45,3	66,8	90,5	
	% difference	18	14	13	11	13	
	Mixer, cc/min	5	10	15	20	30	40
Isobutane	Measure, cc/min	5,5	10,8	16,1	21,1	30,6	41,4
	% difference	10	8	7	6	2	4

Mixture	

Mixer, cc/min	40/10	60/15	80/20
Measure, cc/min	55,9	77,9	114,1
% difference	12	4	14

Thanks to P. Dulov (TOF-400)

The gas mixer produce the gas mixture in slightly larger values, but the composition of gas mixture is about the same – Argon 80% +Isobutane 20%

Detectors amplitudes puzzle

39 cm GEMs

Gas mixture go through all detectors in series.

In general - the amplitude of the signals increases from the first detector to the last detector.

Temperature influence

Temperature of Gas Cylinder = 19°C, temperature in GEM test room = 24°C

Temperature influence

Flow = $3 l/h, T_{cyl} = 19C$,

 $T_{room} = 25C$

Gem №10

Gas in

Gas out

With low flow rate gas doesn't have time to hit up

Precise models of GEM-detectors

The quality of the models are improved. Drawings contain the information about materials, densities and thicknesses. Total - 84 drawings for one type of GEM-detector.

The main goal – simplified, but realistic model for BMNroot.

Racks an cables

175 cables from ADC to patch-panels was laying in the cable duct.

- All cables (signal, high-voltage, low-voltage) was produced;
- Cables marking was completed;
- Number and position of the racks in the experimental hall is fixed;
- Location of the crates and modules in the racks are fixed.

Crates and modules in the racks

Cosmic rays tests (single CSC)

$CSC 1 \times 1 m^2$

Tests of two CSC

One CSC 1×1 m² was tested at Nuclotron beam in 2018.

Four CSC 1×1 m² were tested on cosmic rays and radiation source at summer 2021.

The oxygen impurities in gas mixture before and after the chambers was measured. O_2 level ≥ 150 ppm.

Three CSC 1×1 m² are ready to SRC run – HV and LV systems are ready, detectors were equipped with front-end electronics, cables and gas tubes.

$\text{CSC 1} \times 1 \text{ m}^2$

U rab = 2500 v

Software for online checking of CSC performance and parameters: efficiency, cluster size, amplitudes, 2D distribution of the detector occupancy.

$CSC 1 \times 1 m^2$

Blue – CSC with 3,5 mm gap Red and Green – CSC with 3,8 mm gap

Effective CSC from HV

Amplitude X from HV

Amplitude Y from HV

Comparison of the CSC with 3.5 mm gap on the CSC with 3.8 mm gap efficiency, the amplitudes and the cluster size characteristics.

$CSC 2 \times 1.5 m^2$

Expanded assembly table with precise hole pattern

Preliminary matching of cathode panels

$\text{CSC } 2 \times 1.5 \text{ m}^2$

Assembly and tests of the first big CSC -03.2022Preparing to assembly of the first big Cathode Strip Chamber was started:

- All parts of detectors are delivered to JINR;
- Expanded assembly table is ready;
- Protective resistors are soldered to the cathode boards.

Soldering the protection resistors on front-end electronics connectors

Thanks you for your attention!

Amplitudes with different flow

