Current Progress in TOF700 Fragment analysis in Argon data run 7

Lalyo Kovachev^{1,2}, Yuri Petukhov², Vasily Plotnikov² 1. FPET Plovdiv University Paisii Hilendarski, Bulgaria

2. VBLHEP Joint Intitute for Nuclear Research, Russia

Argon data run 7

Ar beam 3.2 GeV/n Targets Al,C,Sn,Cu,Pb

Schematic drawing of the BM@N setup

04.10.2021

TOF700 Particle Identification chain

For **Data** and **MC** we use the **same** Identification chain

For MC we use DCM QGSM Generator

Si-GEM(data) tracks from V. Plotnikov

DCH tracks from **DCH** group

TOF700 hits from **Y. Petukhov**

Si-GEM tracks are extrapolated to the **DCH1** z-position and matched against the **DCH1** tracks

Successfully matched tracks are extrapolated to the **TOF700** planes and matched against the **TOF700** hits

TOF400 DCH1 TOF700

Signal Normalization and Residual Smearing (V. Plotnikov)

GEM

Si-GEM tracks Cut Selection

Primary vertex cuts: number of tracks > 1, coordinates in limits Track cuts: Number of **Silicon hits > 1 && GEM hits > 3**

Silicon Efficiency

GEM Efficiency

GEM Efficiency

Momentum dependence of matching criteria

DCH1 Efficiency

04.10.2021

Kovachev L. BM@N Collaboration Meeting

TOF700 Efficiency

Kovachev L. BM@N Collaboration Meeting

Reconstructed M² distribution

Note: different momentum ranges for different fragments

Fragments yield relative protons and K/π for different triggers

	π	к	р	He ³	d, He ⁴	t	Κ/π
All triggers All targets	31162	1805	106310	1992	25939	2348	
	0.2931	0.0170	1.0000	0.0187	0.2440	0.0221	0.0579
Tr2(id 41) BD>3	8523	458	27943	465	6526	595	
	0.3050	0.0164	1.0000	0.0166	0.2336	0.0213	0.0537
Tr3(id 42) Si>3	7119	411	25018	508	6027	553	
	0.2846	0.0164	1.0000	0.0203	0.2409	0.0221	0.0578
Tr1(id 49) BD>1&Si>2	8874	516	31105	522	8159	819	
	0.2853	0.0166	1.0000	0.0168	0.2623	0.0263	0.0582

The particles ratio does not depend much from the trigger

Rapidity distributions for MC model

Rapidity distributions are different, depending on target

Phase space for protons for Data and Efficiency corrected Data

Some bins along the edge of area are missing because there is not enough statistics in MC.

04.10.2021

Rapidity distributions for protons in different intervals on Pt for MC model and efficiency corrected Data

Phase space for deuterons for Data and Efficiency corrected Data

are missing because there is not enough statistics in MC

Rapidity distributions for deuterons in different intervals on pt for MC model and efficiency corrected Data

Here we have a much more better agreement in distributions

Phase space for H³ for Data and Efficiency corrected Data

Some bins along the the edge of area are missing because there is not enough statistics in MC

Rapidity projection for H³ for MC model and Efficiency corrected Data

Here we see wider bins because of the statistics

Phase space for triton for Data and Efficiency corrected Data

Some bins along the the edge of area are missing because there is not enough statistics in MC

Rapidity projection for triton for MC model and Efficiency corrected Data

PT vs YLAB triton

Here we see wider bins because of the statistics

Conclusion:

* MC simulation with realistic effects reasonably describes experimental Data in GEM, DCH, TOF700

* The same analysis chain and selection criteria were used for Data and MC

* Agreement between Data and realistic MC allows us to perform physics analysis to get fragment yields in dependence on transverse momentum and Rapidity

* Need to compare the measured yields with different models

* The developed algorithms of Data and MC analysis and gained experience will be used to get results in the next run.

Thank you for your attention !