

Λ^0 analysis in argon run

P. Batyuk

Analysis meeting

October 4, 2021

Outline:

- Towards realistic Monte Carlo simulation of BM@N Central Tracker
- Efficiencies of tracking procedure calculated for silicon and GEM part of BM@N Central tracker
- Preparations to get Λ^0 yields ...

Calculation scheme:

GEM efficiencies for Monte Carlo and data

GEM efficiencies for Monte Carlo and data

SILICON efficiencies for Monte Carlo and data

Area of low efficiency in Monte Carlo (SILICON)

- Big discrepancies in some ranges along X-axis
- Central area should be corrected more precisely

• Efficiency gap corresponds to area, where negligible part of tracks have first point (<<1%)

Looking at reconstructed Λ^0 in data and Monte Carlo

- Done for all targets
- Three chosen P_t bins: (0.1, 0.35), (0.35, 0.6) and (0.6, 1.3) GeV/c
- Three chosen Y bins: (0.5, 1.3), (1.3, 1.7) and (1.7, 2.3)

- Lower value of first bin and upper value of last bin were chosen not to suppress signal significantly (done when analyzing all targets)
- For each chosen bin $(S \pm \Delta S)$ is estimated

Can we use this version of MC to get yields?

Geometrical cuts in data and Monte Carlo

• Achieved relatively good agreement between Monte Carlo and data by making use of the same set of geometrical cuts

Reconstructed V_0 's in data and Monte Carlo

- Found secondary vertices correspond to selected signal range (\pm 3 MeV/c^2) in the mass spectrum
- Relatively good agreement in X- and Y- directions, some discrepancies are visible in Z.

Conclusion:

- Improved Monte Carlo of the BM@N Central Tracker seems to be almost "matured": some small fixes for silicon part of the tracker required
- Suppression of Λ^0 signal looks reasonable in Monte Carlo if compared with experimental data
- Next step of the work consists of getting Λ^0 yields for all targets