MC generators DCM-QGSM and DCM-SMM

<u>G. Musulmanbekov,</u> In collaboration with M.Baznat and V. Zhezher <u>genis@jinr.ru</u> JINR

> 8th BM&N Meeting Alushta 2021

1

Contents

- Motivation
- LAQGSM
- DCM-QGSM
- DCM-SMM
- Comparison:
 - Similarity and difference
 - Spectators yield
- Determination of numbers of participants and spectators
- Conclusions
- Plans for Future

Heavy Ion Collision

✓ calculate the number of spectators•and many other things ...

Heavy ion collisions in details

- Participant/overlap region many models
 - Production of species (mesons, nucleons, resonances, hyperons, ...) in binary collisions;
 - ✓ Coalescence of nucleons and hyperons
- Spectator region a few models: LAQGSM, DCM-QGSM, DCM-SMM
 - \checkmark Preequilibrium emission
 - ✓ Multifragmentation
 - ✓ Fermi break-up
 - \checkmark Evaporation

LAQGSM and DCM-QGSM

Participant/overlap region

- ✓ Production of species (mesons, nucleons, resonances, hyperons, ...) in binary collisions;
- LAQGSM overestimates meson production for
 - larger colliding nuclei (kaons even at production threshould)
 - higher energies
 - more centralities
- DCM-QGSM is modified LAQGSM
 - Meson production is suppressed artificially (by formation time) for better agreement with experimental data.
 - Corrections of different channels with hyperon production

DCM-QGSM and **DCM-SMM**

Spectator region - nuclear spallation

DCM-QGSM,

- ✓ Preequilibrium emission
- ✓ Fermi break-up
- ✓ Sequential Evaporation
- ✓ Fission

DCM-SMM

- ✓ Fermi break-up
- ✓ Multifragmentation
- ✓ Evaporation
- ✓ Fission

Versions of DCM generators: DCM-QGSM DCM-SMM

DCM-QGSM	DCM-SMM
Step 1	Step 1
 Intranuclear Cascade 	Intranuclear Cascade
Step 2	Step 2
•Coalescence	•Coalescence
Step 3 Residual Nucleus (RN)	Step 3 Residual Nucleus (RN)
Fermi-break-up if A _{res} < 13	•Fermi break-up if A _{res} < 13
 Preequlibrium emission 	Statistical Multifragmentation
 Sequential evaporation 	•Evaporation
Fission	• Fission
 Evaportation 	•Evaporation

DCM-SMM
Step 2: Coalescence
The same

Step 3 Nuclear Spallation

Preequilibrium emission

Exciton model

- n number of excitons,
- p number of particles above Fermi surface,

 $\lambda_{\scriptscriptstyle +\!/\!\scriptscriptstyle -}$ – transition probability

W(n, E) – particle emission probability

Emission of p, n

Condensation of protons and neutrons \rightarrow d, t, ³He, ⁴He

Sequential Evaporation

Step 3 Nuclear Spallation Statistical Multifragmentation

J.P.Bondorf, A.S.Botvina, A.S.Iljinov, I.N.Mishustin, K.Sneppen, Phys. Rep. 257 (1995) 133

Ensemble of nucleons and fragments in thermal equilibrium characterized by neutron number N_0 proton number Z_0 , $N_0+Z_0=A_0$ excitation energy E^* break-up volume $V=(1+\kappa)V_0$

All break-up channels are enumerated by the sets of fragment multiplicities or partitions, $f=\{N_{AZ}\}$

Statistical distribution of probabilities: $W_f \sim \exp \{S_f(A_0, Z_0, E^*, V)\}$ under conditions of baryon number (A), electric charge (Z) and energy (E*) conservation, including compound nucleus.

10

DCM-SMM Statistical Multifragmentation

DCM-QGSM contradicts to data for IMF DCM-SMM is more reliable for the whole spetra

13

Models: DCM-QGSM vs DCM-SMM Detailed analysis Fragment spectra in acceptance of FHCal at MPD

Au+Au ∜s=5 GeV, 2<|η|<5

Much more nucleons and light nuclei are deposited in FHCal by DCM-QGSM They com from preequilibrium emission and sequential evaporation

Resume

Much more nucleons and light nuclei are deposited in FHCal by DCM-QGSM than by DCM-SMM They come from Sequential evaporation

Most of **IMF** icreated at semicentral impact parameters escape through the **hole** that results in decreasing deposition of energy in **FHCal**

Resume

DCM-SMM is more reliable for description of nuclear spallation

Knowledge of mechanism of **nuclear spallation** is very important for **determination of Centrality by the number of Spectators**

Centrality by Participants + Spectators

DCM-QGSM & DCM-SMM

Taking into account inelastic binary collisions only.

- elastically scattered nucleons are considered as spectators
- closer to Glauber considerations

•Number of participants

$$N_{part} = A_0 - N_{spect} = A_0 - A_{RN}$$

here A_0 – atomic number projectile/target nucleus

•We know A_{RN} , so we can determine N_{part}

Centrality definitions

1. Impact parameter interval

2. The Fraction of the Cross Section

3. Number of Participants N_{part} or N_{wound}

4. Number of Spectators N_{spect}

Motivation

- We need to select events by centrality!
- We can do it by characteristics of **spectators**
 - number
 - mass
 - energy
- Experiment: by energy deposited in forward calorimeter MPD: FHCal under construction
- Models
 - **DCM-QGSM**

DCM-SMM

But

Centrality determination by experiment

DCM-SMM

Energy deposited in FHCal cannot resolve central and peripheral events. Additional observalbes are needed to resolve this ambiguity

- space information about spectator hit points (INR Team)
- multiplicty of charged particles in an event

Centrality – impact parameter – charged multiplicity

Centrality determination By **b**, N_{part}

Centrality determination by number of tracks, N_{tracks} , and numper of participants, N_{part}

Conclusions

- DCM-SMM is more reliable for description of the residual nucleus spallation
- DCM-QGSM with sequential evaporation of the residual nucleus more or less agrees with DCM-SMM for peripheral events
- Plans: to combine both into the generator DCM-QGSM-SMM

DCM-QGSM-SMM: Plans for Future

Any transport model with characteristics of binay collisions taken from exp. data overestimates particle production for heavy ion collisions

- 1. Modification of nucleon properties in heavy ion collisions
- 2. Inclusion of heavy resonances in binary collisions
- 3. Development of the mechanism of strangeness enhancement
- 4. Development of the mechanism of enhancement of mass spectra dileptons

Thank You!

Determination of Centrality by models

- Number of Participants: Glauber models, UrQMD, LAQGSM, DCM-QGSM, DCM-SMM
 - ✓ protons
 - ✓ neutrons
- Number of Spectators: LAQGSM, DCM-QGSM. DCM-SMM
 - protons
 - neutrons
 - nuclear fragments (stable and radioactive)

DCM-QGSM	DCM-SMM
Step 1: Intranuclear Cascade	Step 1: Intranuclear Cascade
ELab < 4.5AGeV Binary interactions: Hadronic model hadrons → hadrons (nucleons, hyperons, (non)strange mesons and resonances)	ELab < 4.5AGeV Binary interactions: Hadronic model The same
ELab > 4.5AGeV Binary collisions: QGSM hadrons → quark-gluon strings → hadrons (nucleons, hyperons, (non)strange mesons and resonances)	ELab > 4.5AGeV Binary collisions: QGSM The same

OverExcitation problem solution

DCM-QGSM

Before thermalisation **RN looses** high excitation energy and mass by

Preequilibrium emission of

p, n, d, t, ³He, ⁴He

and

Sequential Evaporation

multistep emission of p, n, d, t, 3He, 4He

DCM-SMM

Recalculation of excitation energy according to **correlation** between **mass** and **excitation energy** of **RN**, derived from exp. data

 $A/A_0 = 1-0.001\epsilon^* - 0.015 \epsilon^{*2}$

29

Models: DCM-QGSM vs DCM-SMM Energy Spectra of Fragments

Comparison with NA49 data Pb+Pb, 158 AGeV

Energy deposited in VCal

Models: DCM-QGSM vs DCM-SMM Detailed analisys Angular distributions of fragments

31

Baryonic matter under compression

At high compression

nucleons are converted into

- delta isobars
- hyperons and their resonances
- higher mass resonances

Their decay is suppressed

Scenario of nucleon modification

Higher compression

 $n, p \to \Delta$ $u, d \to s, \dots$ $n, p \to \Lambda, \Xi, \Omega, \dots$

Hadron modifications in a dense nuclear medium

1. Hadronic matter at high density and temperature

Particle production in a hot and dense fireball

- π production is suppressed
- vector mesons: $\rho, \omega, \varphi, K^*, \dots$ are dominating
- ρ , ω '**melting**': mass dropping and width-broadening;
- Fireball 'cooling' \rightarrow decay of resonances