Clusters in transport approaches (and psMST library)

V. Kireyeu^{1,2}

¹ Joint Institute for Nuclear Research, Dubna ² Helmholtz Forschungsakademie Hessen für FAIR, Frankfurt am Main

8th Collaboration Meeting of the BM@N Experiment at the NICA Facility

October 3-8, 2021

Introduction

Clusters

Conclusions

Extra

Phase diagram of strongly interacting matter

Turko, L. "NA61/SHINE Experiment—Program beyond 2020", Particles 2018, 1, 296-304

Early Universe:

- Large Hadron Collider (LHC)
- Relativistic Heavy Ion Collider (RHIC)

Neutron star mergers:

- Super Proton Synchrotron (SPS)
- Nuclotron based Ion Collider fAcility (NICA)
- Facility for Antiproton and Ion Research (FAIR)

Clusters in HIC: "Ice in Fire"

Low energy: up to 20% of protons in central Au+Au collisions are bound into the clusters.

Nucl.Phys.A 971 (2018) 1-20

High energy HIC – "Ice in a fire" puzzle: how the weakly bound objects can be formed in a hot environment?

• Statistical models

System is described by a (grand-) canonical ensemble of non-interacting fermions and bosons in thermal and chemical equilibrium. No dynamics.

• Hydrodynamical models

Conservation laws + equation of state; assumption of local thermal and chemical equilibrium. Simplified dynamics.

• Transport models

Based on transport theory of relativistic quantum many-body systems. Actual solutions – Monte Carlo simulations. **Full dynamics. Very complicated.**

Microscopic transport models provide a unique dynamical description of nonequilibrium effects in heavy-ion collisions.

In order to understand the microscopic origin of clusters formation one needs:

- a realistic model for the dynamical time evolution of the HIC
- dynamical modeling of cluster formation based on interactions

Cluster formation is sensitive to nucleon dynamics \rightarrow one needs to keep initial and final nucleon correlations by realistic nucleon-nucleon interactions in transport models:

- Quantum-Molecular Dynamics (QMD) allows to keep correlations.
- Mean-filed (MF) based models correlations are smeared out.

Projectile/target spectators: heavy cluster formation Midrapidity: light clusters

IQMD: Ch. Hartnack

(Anti-)hypernuclei production:

- at mid-rapidity by Λ coalescence during expansion
- at projectile/target rapidity by re-scattering/absorption of Λ by spectators

"Cluster dynamics studied with the phase-space Minimum Spanning Tree approach", V. Kireyeu, Phys. Rev. C 103, 054905 (2021), arXiv:2103.10542

- Open source C++ library licensed under the terms of the GNU GPLv3.
- Based on the idea of the MST algorithm (proximity criteria).
- Momentum criteria: psMST can be used to study the influence of the momentum correlations of nucleons and hyperons for the formation of (hyper)nuclei.
- Can be applied to all transport models which propagate hadrons.

Previously "Naive Clusterization", "Kinetic Clusterization".

Models: PHSD-4.0, PHQMD-2.0, SMASH-2.0 and UrQMD-3.4.

Systems: ${}^{40}\text{Ar} + {}^{27}\text{Al}$, ${}^{40}\text{Ar} + {}^{64}\text{Cu}$, ${}^{40}\text{Ar} + {}^{119}\text{Sn}$, ${}^{40}\text{Ar} + {}^{208}\text{Pb}$ at $E_{lab} = 3.2$ AGeV.

Two time steps: 40 and 150 fm/c.

Statistics: 25k events for each system within each model.

psMST: pure "MST" mode, coordinate space information without momentum checks

8th Collaboration Meeting of the BM@N Experiment at the NICA Facility

12/23

8th Collaboration Meeting of the BM@N Experiment at the NICA Facility

8th Collaboration Meeting of the BM@N Experiment at the NICA Facility

8th Collaboration Meeting of the BM@N Experiment at the NICA Facility

8th Collaboration Meeting of the BM@N Experiment at the NICA Facility

8th Collaboration Meeting of the BM@N Experiment at the NICA Facility

8th Collaboration Meeting of the BM@N Experiment at the NICA Facility

 $5 \leq A \leq 20$

8th Collaboration Meeting of the BM@N Experiment at the NICA Facility

- The **psMST** algorithm has been applied to **QMD-based PHQMD-2.0** (density dependent 2-body potential), mean field based **PHSD-4.0** (mean-field potential for baryons) and two models **SMASH-2.0** and **UrQMD-3.4**, both in the cascade mode without potentials.
- The PHQMD with psMST predicts more clusters in the mid-rapidity region than the other models \longrightarrow the n-body quantum molecular dynamics allows to keep the potential induced spacial correlations of baryons.
- The **psMST** library is an **open source tool** which can be used in the stand-alone mode or can be integrated into experimental software frameworks for the simulations of the clusters production.

Clusters at low energies are sensitive to the potential interactions.

- PHSD: W. Cassing, E.L. Bratkovskaya, *Nucl. Phys. A 831, 215 (2009),* arXiv:0907.5331
- PHQMD, MST, SACA: J. Aichelin et. al., *Phys. Rev. C* 101, 044905, arXiv:1907.03860
- FRIGA: A. Le Fèvre et al., Phys. Rev. C 100, 034904, arxiv:1906.06162
- SMASH: J. Weil et al., *Phys. Rev. C 94, 054905 (2016), arXiv:1606.06642* Used SMASH code version: *https://doi.org/10.5281/zenodo.4336358*
- UrQMD: M. Bleicher et al., J. Phys. G 25, 1859 (1999), arXiv:hep-ph/9909407 Coalescence in the UrQMD approach: Sukanya Sombun et. al., Phys. Rev. C 99, 014901 (2019), arXiv:1805.11509
- psMST: https://gitlab.com/vkireyeu/psmst

PHQMD current status

"Cluster and hyper-cluster production in relativistic heavy-ion collisions within the PHQMD approach", Susanne Gläßel et al., e-print: arXiv:2106.14839

Agreement with the experimental data in the energy range from the E864 to the top RHIC (and even with the new STAR hypernuclei results).

8th Collaboration Meeting of the BM@N Experiment at the NICA Facility