

Polarization studies at Nuclotron & BM@N

V. Ladygin in collaboration with P. Batyuk, M.Janek, N.Ladygina, P.Kurilkin, S.Merts

Talk at the 8-th BM@N Collaboration meeting,2-9 October 2021, Alushta, Russian Federation

Few nucleons systems as a tool for dense matter studies

Possible way to obtain the information on the EOS at extreme densities (neutron stars) is the studies of the few nucleon systems.

Relativistic effects in 2NF and contribution of 3NF play very important role.(A.Akhmal et al, Phys.Rev. C58 (1998) 1804)

Short range correlations (SRCs)

 Summary of the theoretical analysis of the experimental findings practically all of which were predicted well before the data were obtained

 More than ~90% all nucleons with momenta k≥300 MeV/c belong to two nucleon SRC correlations

 BNL + Jlab +SLAC

 Probability for a given proton with momenta 600> k > 300 MeV/c to belong to pn correlation is ~ 18 times larger than for pp correlation

 BNL + Jlab

 Probability for a nucleon to have momentum > 300 MeV/c in medium nuclei is ~25% BNL + Jlab 04 +SLAC 93

 Probability of non-nucleonic components within SRC is small - < 20% - 2N SRC mostly build of two nucleons not 6q, ΔΔ,...

 BNL + Jlab +SLAC

 Three nucleon SRC are present in nuclei with a significant probability

Poor data base on the spin parts of the 2N and 3N shortrange correlations. This motivates the necessity to study light nuclei spin structure at short distances.

Relativistic effects in 2N SRCs (deuteron)

 A_{yy} in deuteron inclusive breakup demonstrates the dependence on 2 internal variables: p_{T} and x_{F} .

 A_{yy} changes the sign at p_T of about 600 MeV/c independently on X_F . A_{yy} demonstrates negative asymptotic at large p_T .

Non-nucleonic degrees of freedom

When the distances between the nucleons are comparable with the size of the nucleon, the nucleon-nucleon interaction is a non-local.

The fundamental degrees of freedom, quark and gluons in the frame of QCD, begin also to play a role at the internucleonic distances comparable with the size of the nucleon.

They can manifest as $\Delta\Delta$, NN*, N*N*, 6q etc.components.

Data: V.Punjabi et al., Phys.Lett.B350 (1995) 178 L.S.Azhgirey et al., Phys.Lett.B391 (1997) 22 L.S.Azhgirey et al., Phys.Lett.B387 (1996) 37

Transportation line of the Nuclotron extracted beam to the BM@N spectrometer

Target position is in F5

³He(d,p)⁴He

- The measurements of the tensor analyzing power T₂₀ and spin correlation C_{yy} in the ³He(d,p)⁴He reaction in the kinetic energy range between 1.0 and 1.75 GeV can be performed at the BM@N area.
- The polarization observables for the p(d,p)d, d(d,p)t and $d(A,p(0^{\circ}))X$ at intermediate and high energies also can be studied.
- Non-nucleonic degrees of freedom and baryonic resonances properties can be studied in the $d(A,d(0^{\circ}))X$ and $d(A,\pi^{-}(0^{\circ}))X$ reactions at different energies.
- The tensor analyzing power T₂₀ can be studied for the meson production in the d(A,3He(0°))X reactions.

Simulation for the ³He(d,p)⁴He reaction at 1.5 GeV

Magnet, GEM tracker stations, mRPC wall

The BM@N setup configuration for "inclusive" ³He spin experiment (no BM@N target).

Simulation for the ³He(d,p)⁴He reaction at 1.5 GeV

The XY profiles of the secondary proton beam (in front of the BM@N tracker) for the ³He target only (left panel) and ³He target + 2 mm of quartz radiator of TOF start counter (right panel).

Simulation for the ³He(d,p)⁴He reaction at 1.5 GeV

The XZ profile of the secondary beam hits in the GEM tracker stations for the magnetic field By of 0.4 T (left panel) and 0.9 T (right panel).

dd → ³**Hen(**³**Hp)** reactions at Nuclotron energies

The relativistic multiple scattering model can be successfully used to describe the $dd \rightarrow {}^{3}Hen({}^{3}Hp)$ reactions in a GeV region at the Nuclotron. Detection of proton or ${}^{3}He$ with BM@N spectrometer.

Similar scheme is applicable for the $d(A,p(0^{\circ}))X$, $d(A,d(0^{\circ}))X$ and $d(A,\pi^{-}(0^{\circ}))X$ reactions for proton, deuterium and nuclear targets.

Target position is in F6'

- -The measurements of the tensor A_{yy} and vector A_y analyzing powers in inclusive deuteron breakup, d(A,p)X, at large transverse momenta and the highest Nuclotron energy can be performed in order to study relativistic effects.
- Non-nucleonic degrees of freedom can be studied vis the measurements of the tensor A_{vv} and vector A_v analyzing powers in $d(A,\pi^-)X$ reaction.
- -The polarization properties of the baryonic resonances can be studied in the d(A,d)X reaction.

Experiments require additional TOF detector between F6' and F6 points.

To be hardly realized at BM@N due to modification of the VP1 beam transportation line.

Target position is near F6 Additional non-magnetic arm(s)

-The vector analyzing powers A_v in quasi-elastic np→pn (with the proton spectator detection) and pp→pp reactions. (Partial Wave Analysis). -The tensor A_{vv} and vector A_{v} analyzing powers in elastic $dp \rightarrow pd$ reaction. (Glauber approach). -The tensor A_{vv} and vector A_{v} analyzing powers in the **dp→ppn** reaction. (SRC spin structure).

Target position is near F6

-The tensor A_{yy} and vector A_y analyzing powers in $dd \rightarrow {}^{3}Hp ({}^{3}Hen)$ reaction at forward angles to study unexplained structure in tensor observables sensitive to the 3-body spin structure.

Target position is in F6 (near SP41 pole)

Physics of Baryonic resonances.

The measurements of the tensor A_{yy} and vector A_y analyzing powers in exclusive d(p, pp(¹S₀))X and d(p, d)X reactions between 2 and 6 GeV of the deuteron kinetic energies. Detection of the pions in the final state are very important.

Hot topic: **d***(2380) - **0**(3+) resonance

Structure in analyzing power of np→pn

HADES plans

BM@N advantages: -magnetic analysis in forward direction -polarized beam!

Investigation of the vector analyzing power A_y in neutron induced reactions (with the proton spectator detection) like $np \rightarrow pn$, $np \rightarrow pp\pi^-$, $np \rightarrow pn\pi^+\pi^-$, $np \rightarrow d\pi^+\pi^-$ etc. reactions at the energies 1.0-2.0 GeV.

Conclusion

BM@N setup is well suited for the physics with polarized deuterons using new SPI.

Such measurements can provide new insight to spin structure of SRC, mechanisms of baryonic resonances and d* production.

However, such program requires the advanced extracted deuteron beam polarimetry.

Thank you for the attention!

Quark degrees of freedom

• At high energy **s** and large transverse momenta **p**_t the constituent counting roles (CCR) predict the following behavior of the differential cross section for the binary reactions:

$$\frac{d\sigma}{dt}(ab \rightarrow cd) = \frac{f(t/s)}{s^{n-2}} \qquad ; \qquad n = N_a + N_b + N_c + N_d$$

(Matveev, Muradyan, Tavkhelidze, Brodsky, Farrar et al.)

Yu. N. Uzikov (JETP Lett, 81, pp. 303-306, 2005) For the reaction dd \rightarrow ³Hen $N_A + N_B + N_C + N_D - 2 = 22$ For the reaction dp \rightarrow dp

$$N_A + N_B + N_C + N_D - 2 = 16$$

The regime corresponds to CCR can occur already at $T_{\rm d} \sim 500~MeV$

Measurement of the deuteron beam polarization at ITS using CNS detection system at 270 MeV

A schematic view of the polarimeter setup installed downstream the ITS spherical chamber.

Tensor p_{yy} and vector p_y polarization of the beam for "2-6" and "3-5" spin modes of PIS POLARIS as a function of the deuteron scattering angle in the c.m.s.

- Main deuteron beam polarimeter at Nuclotron-M.
- dp- elastic scattering at large scattering angles in the center of mass system.
- The detectors cover the angular range 60-140° in the c.m.s. (P.K. Kurilkin et al., Nucl. Instr. and Meth. A 642 (2011) 45)

Subtraction of carbon contribution

The quality of the carbon contribution subtraction for dd->³Hp at 200 MeV at several scattering angles in c.m.s.

The quality of the carbon contribution subtraction for dd->³Hen at 270 MeV at several scattering angles in c.m.s.

Polarization effects in the dd → ³**Hen(**³**Hp) reactions at Nuclotron energies**

The relativistic multiple scattering model was successfully used to describe the $dd \rightarrow {}^{3}Hen({}^{3}Hp)$ reactions in a GeV region at the Nuclotron. The calculations require a large amount of CPUs. The results were published in FBS, PRC, PPN.

N.Ladygina - theory A.Kurilkin – experiment

Dilepton angular distributions (E.Bratkovskaya)

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta \mathrm{d}\varphi} = \left(1 + B\cos^2\theta + \mu\sin2\theta\cos\varphi + \frac{v}{2}\sin^2\theta\cos2\varphi\right)$$

B, μ , ν : anisotropy coefficients - related to helicity structure functions and the spin density matrix elements of the virtual photon

 $d\sigma/d(\cos\theta) \sim 1 + B \cos^2\theta$, B=[-1,+1]

In the **helicity frame**, i.e. θ in rest frame of γ^* w.r.t. $p(\gamma^*)$ in source frame:

Different elementary alignment mechanisms:

pseudoscalar mesons (e.g. π^0 and η): photon transversality **B** = +1

vector mesons (ρ , ω and ϕ): no preferred spin orientation of VM **B** = **0**

TRAINING ADDACES OF SET UP: $\pi \pi$ annihilation: p wave (L=1 \perp to $\pi \pi$ scattering plane) **B** = -1

■ baryonic resonances N* decays: B ≠ 0

• NN and πN bremsstrahlung: **B** \neq **0**

Bratkovskaya, Toneev, Teryaev et al., Phys. Lett. B 348 (1995) 283, 325; B 362 (1995) 17, B376 (1996) 12

Fig. 1. *M* dependence of the decay anisotropy coefficient for different elementary dilepton sources: the Dalitz decay of η and π^0 mesons, $\pi^+\pi^-$ -annihilation, *pn* and *pp* bremsstrahlung (at two energies).

Results on anisotropy coefficients

Anisotropy coefficients for heavy-ion collisions – avaraging over all possible directions of virtual photons $\rightarrow \langle B_{\pi\pi} \rangle_{AA} \sim -0.1$ - smearing of signal compared to elementary reactions ($B_{\pi\pi}$ =-1) Note: B in helicity frame!

NA60 measured anisotropy coefficients! Choice of reference frame: Collins-Soper

In rest frame of virtual photon: θ - angle between the positive muon p_{μ_+} and z-axis; z axis is a bisector between p_{proj} & - p_{target}

NA60: Zero polarization within errors !

completely random orientation of annihilating particles (pions or quarks) in 3 dimensions
 thermal origin of dimuons

*Warning: + some small residual polarization of hadronic origin?!

BUU model: Bratkovskaya, Cassing, Mosel, Z.Phys.C75 (1997) 119

