

8th Collaboration Meeting of the BM@N Experiment at the NICA Facility

Simulation of BM@N data processing and some propositions

D. PRIAKHINA

- V. KORENKOV
- V. TROFIMOV
- K. GERTSENBERGER

Introduction

The software complex for simulation of distributed data processing systems is being developed at the MLIT.

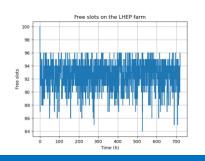
The important task

The data processing simulation of the BM@N experiment.

Simulation goal

- to find out how the data storage and processing system will work with the available computing power;
- to calculate the load on computing farms and communication links with the specified parameters of data flows and tasks.

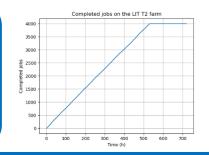
The simulation software complex


- equipment parameters
- list of jobs for processing

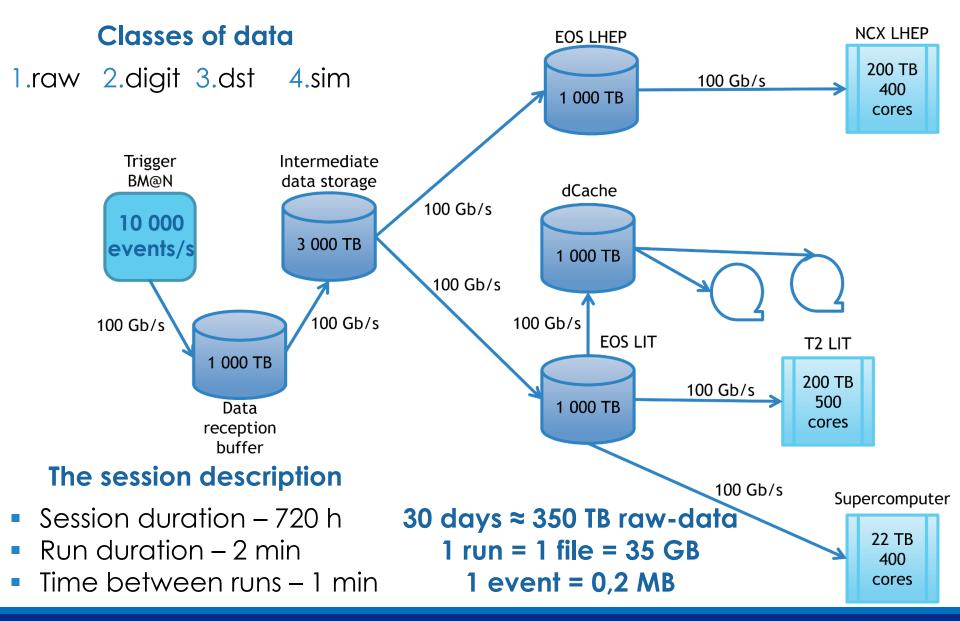
Database

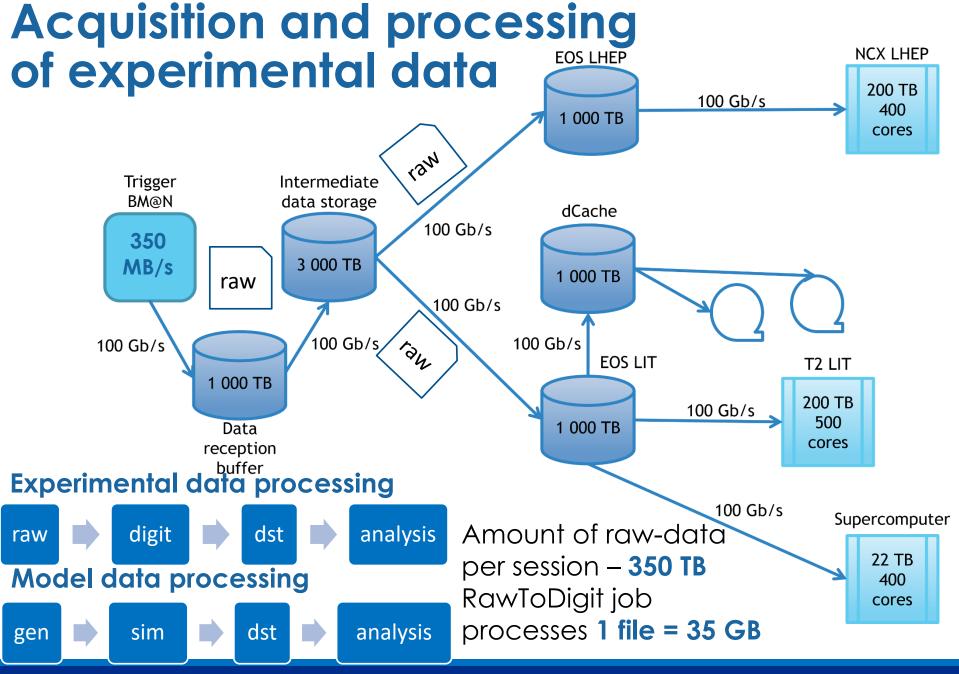
simulation results

Module for setting of equipment configurations



Module for presenting results

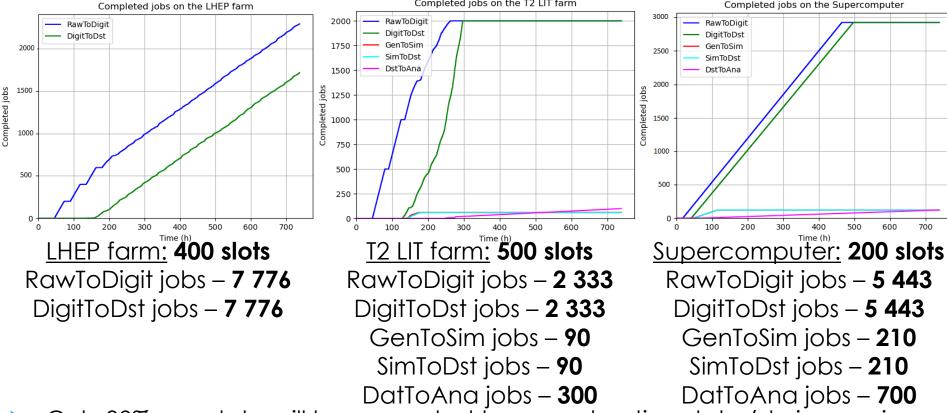




Stable core for transfer and processing data simulation

The simulated structure

Classes of jobs


N º	Class	Event processing time on one processor (ms)		Number of events in the file (1 file = 1 job)	AVACUTION	The average amount of output (GB)	Number of jobs
1	RawToDigit	350 (HPC) 1 000 (NCX)	35	175 000	61 250 (HPC) 175 000 (NCX)	1	15 552
2	DigitToDst	150 (HPC) 430 (NCX)	1	175 000	26 250 (HPC) 75 250 (NCX)	1	15 552
3	GenToSim	60	0,6	175 000	10 500	8	300
4	SimToDst	30	8	175 000	5 250	1	300
5	DstToAna	10	1	175 000	1 750	0,1	1 000

Scenarios for executing jobs

Distribution of data processing jobs (in %) to computing nodes

Nº	Class	Scenario 1			Scenario 2			Scenario 3		
		NCX LHEP	T2 LIT	Super- comp.	NCX LHEP	T2 LIT	Super- comp.	NCX LHEP	T2 LIT	Super- comp.
1	RawToDigit	50	15	35	80	20	-	-	10	90
2	DigitToDst	50	15	35	80	20	-	-	10	90
3	GenToSim	-	20	80	-	-	100	100	-	-
4	SimToDst	-	20	80	-	-	100	100	-	-
5	DstToAna	-	20	80	70	10	20	80	20	-

Results of Scenario 1

- Only 30% raw data will be converted to reconstruction data (during session 30 days).
- > 60% of simulation data will be converted to reconstruction data by 720 h.
- We will have to wait several more months until the end of processing all the raw data after the end of the session.
- There are not enough resources for data analysis.

Results of Scenarios 2 & 3

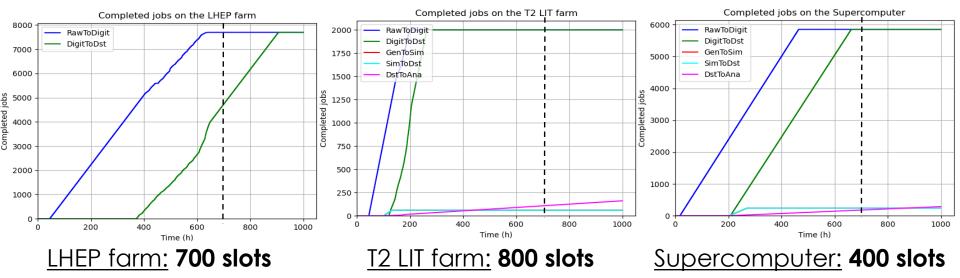
The results obtained were similar to the results of the first scenario.

Scenario 2
Scenario 3
10%
15%
of all jobs session can be processed by 720 h
1.5%
1%

of raw data will be converted to reconstruction data by 720 h

100% 100%

of simulation data will be converted to reconstruction data


LHEP farm & T2 LIT farm LHEP farm & Supercomputer all slots are occupied

Problem: the result is unsatisfactory...

Solving the problem

- To increase the number of cores on computing nodes:
 - LHEP farm 700 cores
 - T2 LIT farm 800 cores
 - Supercomputer 400 cores
- Do not occupy computing resources with other jobs until the jobs of primary data processing (RawToDigit) begin to free up the cores.

Improvement results

By end of the Run (30 days)

- 100% raw data will be converted to digit data
- > 90% of raw data will be converted to reconstruction data

We will have to wait after the end of the session

1 week until the end of processing all the raw data to reconstruction data.

Conclusions and Outlook

- Developed a tool for modeling the data processing.
- Based on the simulation results, we can predict problems that may appear during the experiment and data processing.
- 3 scenarios for executing jobs are modeled. Some problems were found: a small amount of experimental data can be processed by the end of the session.
- Need to increase the number of cores on computing nodes (LHEP 700 cores, T2 LIT 800 cores, Supercomputer 400 cores) and adjust the start time of jobs. Result: 90% of all raw data will be processed by 720 h.

Next steps:

- developing module like pilot for starting jobs;
- conducting computational experiments taking into account the fact that the equipment does not have absolute reliability (calculating probability of equipment failure and recovery times);
- o find the optimal number of cores to perform all jobs, taking into account their updated parameters.

8th Collaboration Meeting of the BM@N Experiment at the NICA Facility

Thank you for the attention!

D. PRIAKHINA

V. TROFIMOV

G. OSOSKOV

K. GERTSENBERGER

