

## **Improvement of Si+MWPC Tracking with SRC Data. Algorithm for Run8 Upstream Track Reconstruction**

Vasilisa Lenivenko for SRC group at BM@N collaboration



8th BM@N Collaboration Meeting

3-8 October 2021







# SRC RUN7 CONFIGURATION (2018):



# Upstream (MWPC-Si) Track Algorithm



- . Si Tracks building in SiDets
- . MWPC Tracks (Pair1) building in Ch2 & Ch3
- 3. Si Tracks MWPC Tracks (Pair1) matching
  - . Matching of the rest Si Tracks with MWPC Segments separately (Ch2 or Ch3)
- 5. Track fitting by 2 systems => **Upstream track**

# MWPC Working Area is Increased (downstream the target)



One-coor. S1-area is not used

MWPC has 6 planes: U,V are rotated by  $\pm$  60 degrees to the X-axis

#### Area3

- is the area of intersection of 3 coordinates: XVU (6-planes segment possible)
- Area 3 ≈ beam area (it's basically 1 track)
   Area3 was used in old algorithm of MWPC track reconstruction

Area2 is the area where 2 coordinates intersect:  $U_1 U_2 V_1 V_2$  or  $X_1 X_2 V_1 V_2$  or  $X_1 X_2 U_1 U_2$ (4- planes segment possible)

 $S1 = S2 = S3 = 166 \text{ cm}^2$ 

The adding of Area2(S2) doubles the working area!

### Improvement in New Algo: False Combinatorics were Rejected



Ch2 segments coordinate plots. The same for Ch3 and Pair1

# Data vs MC: Coordinate Plots for Ch2 Segments

New algo

Data Run 3338 (H2 target)

MC true (QGSM)



Good agreement between experimental and MC data is obtained



# MC reco vs MC true: Upstream Reco Algo Improvement



8

## MC True vs Reco: Angle between Two Upstream Tracks

#### DCM-SMM

1M events



V. Lenivenko 8th BM@N Collaborating Meeting

## Detector and Algorithm Efficiency(SRC Data)

Efficiency =

N of events with tracks in the Upstream system



V. Lenivenko 8th BM@N Collaborating Meeting

# Conclusions (RUN7)

- An algorithm for Upstream tracks reco based on MWPC and SiDet has been improved
- Number of MC true & MC reco tracks coincide in 92% of events (old reco 37%)
- Due to this the reconstruction reproduces the two track angles behavior with MC data
- Y vs X profiles between MC and SRC data are in good agreement
- Upstream reco efficiency is increased by 3-4% with SRC data
- New reco algo & realistic MC for Upstream region will be implemented into bmnroot

### 2021 Experiment: Setup





Mainly we will use SiDet info ( high precision & good efficiency)

- 1. Search pairs  $|X X'| < \delta$  in Si1 or Si3.  $|Y Y'| < \delta$  in Si2 or Si4 2.  $(X, X') \Longrightarrow \tilde{Y}$  Search correspondence and compose spatial fragments of track  $(Y, Y') \Longrightarrow \tilde{X}$
- 3. Build tracks from track fragments which are looking at Vertex



#### 4. MWPC use for confirmation

# Algo for RUN8(cont.) But

- B<sup>11</sup> w/o hits in SiDet Y vs X position of B<sup>11</sup> in SiDet • Si gap 1mm between modules hYXB11Si2 hYXB11Si2 wohit (B<sup>11</sup> MC data: 17% of events in gap) 0 83% 17% Entries 221079 Entries 45780 • Si strip has charge overflow in beam region -10 -8 SiDet gap => Loss in coordinate precision -15 -10 2 10 -10 5 n
- Possible SiDet failure
   MWPC 2/3 segments (algo from RUN7)



MC data

V. Lenivenko 8th BM@N Collaborating Meeting





- $\sigma_{x,y} 30 \ \mu m \implies 50 \ \mu m \ (more \ realistic)$
- Hit efficiency  $100\% \Rightarrow 85\%$  (worse than expected)
- The orthogonal coordinate for inefficiency  $\sigma_{x,y} = 1.6 \text{ mm}$



MC-true vs MC "reco": Angle between Two Fragments in SiDet (wide angle region)

MC – blue MC "reco" - red



Ό

6

7

5

2

3

4

8

9 10

2

5

10

Nreco

V. Lenivenko 8th BM@N Collaborating Meeting



For small angle region we see some difference for angle between two tracks but it's not so essential

# Conclusions (RUN8)

- The track reconstruction method for RUN8 which is based on two pairs of X&Y oriented SiDets has been studied in detail
- dPt/Pt resolution in SiDet is expected to be two times better than in previous RUN
- Number of MC true & MC reco tracks coincide in 90% of events
- The scalar angle between two fragments in SiDet is well recognized

# Thank you for your attention!



# Back up



# Acceptance in detector systems for RUN7

|                               | vertex | Si1             | Si2             | Si3             | PC2    | PC3    | DC1    | DC2    |
|-------------------------------|--------|-----------------|-----------------|-----------------|--------|--------|--------|--------|
| <b>B11</b><br>(acceptance)    | 266976 | 229023<br>(.86) | 221079<br>(.83) | 230985<br>(.87) | 266859 | 266858 | 266858 | 266858 |
| <b>Li7He4</b><br>(acceptance) | 1263   | 1159<br>(.91)   | 1038<br>(.82)   | 1104<br>(.87)   | 1263   | 1256   | 1263   | 1263   |

### The reconstruction algorithm upstream the magnet in each system (SiDet & MWPC)



- Hit reading & cluster building
- Segment/track cluster • Track-segment candidates building
  - Fitting with a straight line
    - by using measurements
  - -> Select the best segment by  $\chi^2$  criteria
  - Track-segments are matching between different detectors
  - Resulting tracks are fitted

### **Improved Track Reconstruction in MWPCs**



MWPC working regime was not optimal- the clusters were huge

Track-segment = reconstructed straight track in one chamber



- 2. Reconstruct & fit track-segment in each chamber
- 3. Extrapolate segments to  $Z_{0,1} = (Z1+Z2)/2$  & select best pairs by  $\chi^2$  criteria, angles are not taken into account
- 4. MWPC track in Pair0 and Pair1

| 000          | track-se | oment | <b>I</b> |   |
|--------------|----------|-------|----------|---|
| 2000         |          | 5     |          |   |
| <b>000</b>   |          |       |          |   |
| 000          |          |       |          |   |
| <b>000</b>   |          |       |          |   |
| <b>000</b> ╞ |          |       |          |   |
| <b>000</b> È |          | 4     | 5        | 6 |

# **Track Reconstruction in Silicon Detector**

1. X and X' (2.5°) neighboring fired strips – cluster center  $CoG = \frac{\sum^{N} A_{i} * i}{\sum^{N} A_{i}}$ , A<sub>i</sub>-charge amplitude on i-th strip 2. Track Reconstruction using various cases

Silicon was not the most optimal configuration
 X's reading ineffective

BmnSiliconTrack.fNhits

• Case 1: 6 hits (3 spatial points) per track 1 spatial point in st. 1 and 3 + X / X' in st.2 • Case 2: ★ - 🛛 🗙 hit ★ - X' hit 1 spatial point in st. 1 and 2 + X / X' in st. 3 • Case 3: (X + X') in (st. 1 + st. 2) + spatial point in st. 3 • Case 4: 7000 r 6000 Number of points per 5000 Si-track 3. Straight line fit on X & X' – coordinates, rough Y – coordinate:  $Y = \frac{X'-X}{tg2.5^{\circ}}$ 4000 3000 Accepted track goes out from the target area 2000 1000 V. Lenivenko 8th BM@N Collaborating Meeting



### **Multi Wire Proportional Chambers**





This point should satisfy the following condition:

The intersection of these planes is a working area X = 0



#### **Silicon Tracking detector**



640 X strips with 0° 640 X' strips with 2.5° The pitch of X strips : 95  $\mu$ m The pitch of X' strips :103  $\mu$ m. Thickness of detectors is 300  $\mu$ m

The contribution to the collected charge value is given by both electron and hole flow. Double-Sided Silicon Detectors (DSSD)

#### •2-coordinate Si strip detector

Capability of stable operation in conditions of high loadings up to  $10^6$  Hz/cm<sup>2</sup> Response time is 10-15 ns Coordinate resolution ~ 50  $\mu$ m







Full sensitive size of 25 x 25  $cm^2$ 

# • Run 3338 (H2 target) Number of Mwpc(pair1) tracks Red – new algo Blue – old algo



# Analysis: Proton momentum before the interaction

First analysis paper accepted for publication (Phys.Nature)!



• The momentum of the proton in the nucleus before interaction are key part physical analysis



• The proton momentum before the interaction was reconstructed using 3 vectors :

Incoming vector to the target and 2 protons in the arms

# Analysis: momentum of the residual ion

First analysis paper accepted for publication (Phys.Nature)!



The residual nuclei momentum was restored based on two straight segments: upstream and downstream the analyzing magnet

Now we are working to analyze the rest of the final states