∞
LHEP
自|11||IIIIIIIII

JINR

\%

Improvement of Si+MWPC Tracking with SRC Data. Algorithm for Run8 Upstream Track Reconstruction

Vasilisa Lenivenko for SRC group at BM@N collaboration

Hen Lab
8th BM@N Collaboration Meeting

3-8 October 2021

SRC RUN7 CONFIGURATION (2018):

Upstream (MWPC-Si) Track Algorithm

1. Si Tracks building in SiDets
2. MWPC Tracks (Pair1) building in $\mathrm{Ch} 2 \& \mathrm{Ch} 3$
3. Si Tracks - MWPC Tracks (Pair1) matching

4. Matching of the rest Si Tracks with MWPC Segments separately (Ch2 or Ch3)
5. Track fitting by 2 systems $=>$ Upstream track

MWPC Working Area is Increased (downstream the target)

One-coor. S1-area is not used

MWPC has 6 planes:
U, V are rotated by ± 60 degrees to the X -axis

Area3

- is the area of intersection of 3 coordinates: XVU (6-planes segment possible)
- Area $3 \approx$ beam area (it's basically 1 track)

Area3 was used in old algorithm of MWPC track reconstruction
Area2 is the area where 2 coordinates intersect:
$\mathrm{U}_{1} \mathrm{U}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2}$ or $\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2}$ or $\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{U}_{1} \mathrm{U}_{2}$ (4- planes segment possible)

$$
\mathrm{S} 1=\mathrm{S} 2=\mathrm{S} 3=166 \mathrm{~cm}^{2}
$$

The adding of Area2(S2) doubles the working area!

Improvement in New Algo: False Combinatorics were Rejected

Data vs MC: Coordinate Plots for Ch 2 Segments

New algo
Data Run 3338 (H2 target)
MC true (QGSM)

Good agreement between experimental and MC data is obtained

Data vs MC : Upstream Tracks (Y vs X)

MC reco vs MC true: Upstream Reco Algo Improvement

DCM-SMM

MC True vs Reco: Angle between Two Upstream Tracks

DCM-SMM

The reconstruction reproduces well the two fragment angles with MC data [deg]

Detector and Algorithm Efficiency(SRC Data)

$$
\text { Efficiency }=\frac{\mathrm{N} \text { of events with tracks in the Upstream system }}{\mathrm{N} \text { of events with tracks before the target(Pair0) }}
$$

Conclusions (RUN7)

- An algorithm for Upstream tracks reco based on MWPC and SiDet has been improved
- Number of MC true \& MC reco tracks coincide in 92% of events (old reco 37%)
- Due to this the reconstruction reproduces the two track angles behavior with MC data
- Y vs X profiles between MC and SRC data are in good agreement
- Upstream reco efficiency is increased by $3-4 \%$ with SRC data
- New reco algo \& realistic MC for Upstream region will be implemented into bmnroot

2021 Experiment: Setup

Algo for RUN8

Mainly we will use SiDet info (high precision \& good efficiency)

1. Search pairs $\left|\mathrm{X}-\mathrm{X}^{\prime}\right|<\delta$ in Si1 or Si3. $\left|\mathrm{Y}-\mathrm{Y}^{\prime}\right|<\delta$ in Si2 or Si4
2. $\left(\mathrm{X}, \mathrm{X}^{\prime}\right)=>\bar{Y}$ $\left(\mathrm{Y}, \mathrm{Y}^{\prime}\right) \stackrel{ }{\Rightarrow} \tilde{X}$

Search correspondence and compose spatial fragments of track
3. Build tracks from track fragments which are looking at Vertex

4. MWPC use for confirmation

Algo for RUN8(cont.)

But

MC data

- Si gap 1 mm between modules ($\mathrm{B}^{11} \mathrm{MC}$ data: 17% of events in gap)
- Si strip has charge overflow in beam region
$=>$ Loss in coordinate precision
B^{11} w/o hits in SiDet

- Possible SiDet failure MWPC $2 / 3$ segments (algo from RUN7)

MC-true vs MC "reco": Angle between Two Fragments in SiDet
(wide angle region)
MC - blue MC "reco" - red

For wide angle region we can't see the difference for angle between two tracks

MC vs MC "Reco": Angle between Two Fragments in SiDet (small angle region)

MC - blue
MC "reco" - red MC "reco"

For small angle region we see some difference for angle between two tracks but it's not so essential

Conclusions (RUN8)

- The track reconstruction method for RUN8 which is based on two pairs of X\&Y oriented SiDets has been studied in detail
- $\mathrm{dPt} / \mathrm{Pt}$ resolution in SiDet is expected to be two times better than in previous RUN
- Number of MC true \& MC reco tracks coincide in 90% of events
- The scalar angle between two fragments in SiDet is well recognized

Back up

Acceptance in detector systems for RUN7

	vertex	Si1	Si2	Si3	PC2	PC3	DC1	DC2
B11	266976	229023	221079	230985	266859	266858	266858	266858
(acceptance)		$(.86)$	$(.83)$	$(.87)$				
Li7He4	1263	1159	1038	1104	1263	1256	1263	1263
(acceptance)		$(.91)$	$(.82)$	$(.87)$				

The reconstruction algorithm upstream the magnet in each system (SiDet \& MWPC)

- Resulting tracks are fitted
- Track-segments are matching between different detectors

Improved Track Reconstruction in MWPCs

Pair0

Pair1

MWPC working regime was not optimal- the clusters were huge

Track-segment $=$ reconstructed straight track in one chamber

1. Track-segment formed using

2. Reconstruct \& fit track-segment in each chamber
3. Extrapolate segments to $\mathrm{Z}_{0,1}=(\mathrm{Z} 1+\mathrm{Z} 2) / 2 \&$ select best pairs by χ^{2} criteria,
 angles are not taken into account
4. MWPC track in Pair0 and Pair1

Track Reconstruction in Silicon Detector

1. X and $X^{\prime}\left(\mathbf{2 . 5} \mathbf{5}^{\circ}\right)$ neighboring fired strips - cluster center $\operatorname{CoG}=\frac{\sum^{N} A_{i} * i}{\sum^{N} A_{i}}, \mathrm{~A}_{\mathrm{i}}-$ charge amplitude on $i-$ th strip
1.Silicon was not the most optimal configuration 2. X's reading ineffective
2. Track Reconstruction using various cases

- Case 1 :

6 hits (3 spatial points) per track

- Case 2:
- Case 3:

1 spatial point in st. 1 and $2+X / X^{\prime}$ in st. 3

- Case 4:

$$
\left(X+X^{\prime}\right) \text { in }(\text { st. } 1+\text { st. } 2)+\text { spatial point in st. } 3
$$

$\begin{array}{ll}\star- & \text { Xhit } \\ \star- & \text { X'hit }\end{array}$

Multi Wire Proportional Chambers

Each MWPC has 6:
two X, two U and two V-planes with wire angles $0^{\circ}, \pm 60^{\circ}$.
Wire pitch is $\mathrm{d}=2.5 \mathrm{~mm}$.
Coordinate resolution is $d / \sqrt{12}=0.72 \mathrm{~mm}$.

$$
\begin{aligned}
& U=\frac{x+\sqrt{3} y}{2} \\
& V=\frac{x-\sqrt{3} y}{2}
\end{aligned}
$$

This point should satisfy the following condition:

Silicon Tracking detector

$640 \times$ strips with 0°
640 X ' strips with 2.5°
The pitch of X strips : $95 \mu \mathrm{~m}$
The pitch of X ' strips : $103 \mu \mathrm{~m}$.
Thickness of detectors is $300 \mu \mathrm{~m}$
Double-Sided Silicon Detectors (DSSD)

-2-coordinate Si strip detector

Capability of stable operation in conditions of high loadings up to $10^{6} \mathrm{~Hz} / \mathrm{cm}^{2}$
Response time is $10-15 \mathrm{~ns}$
Coordinate resolution $\sim 50 \mu \mathrm{~m}$

The contribution to the collected charge value is given Full sensitive size of $12 \times 12 \mathrm{~cm}^{2}$ by both electron and hole flow.

Full sensitive size of $25 \times 25 \mathrm{~cm}^{2}$

- Run 3338 (Hz target) Number of Mwpc(pair1) tracks

Red - new algo Blue - old algo

Analysis: Proton momentum before the interaction

First analysis paper accepted for publication (Phys.Nature)!

- The momentum of the proton in the nucleus before interaction are key part physical analysis
the reaction of knocking out nucleons from the target Lab Frame:

- The proton momentum before the interaction was reconstructed using 3 vectors :
Incoming vector to the target and 2 protons in the arms

Analysis: momentum of the residual ion

First analysis paper accepted for publication (Phys.Nature)!

The residual nuclei momentum was restored based on two straight segments: upstream and downstream the analyzing magnet

Now we are working to analyze the rest of the final states

