Monte Carlo feasibility studies for heavy-ion interactions

V.Vasendina, <u>A.Zinchenko</u> VBLHEP, JINR, Dubna, Russia

The 8-th BM@N Collaboration Meeting 3 - 8 October 2021, LHEP, JINR

Outline

- ✓ BM@N experiment
- ✓ BM@N geometry in future runs
- ✓ BM@N tracker performance
- ✓ MC simulations for Run 8 (Xe+A in 2022):
 - \checkmark K⁰_s reconstruction
 - \checkmark Λ reconstruction
 - ✓ Ξ^- reconstruction
 - ✓ $_{\Lambda}$ H³ reconstruction
- ✓ MC simulations for Run ? (Au+Au in 202?):
- ✓ Summary and next steps

BM@N experiment

Rate capability of heavy-ion experiments (running and under construction)

T. Ablyasimov et al., (CBM Collaboration) Eur. Phys. J. A 53 (2017) 60

NICA Heavy Ion Complex

BM@N: beams from p to Au, heavy ion energy 1-3,8 AGeV, Au intensity up to 2 MHz

BM@N experiment - physics

Multi-strange hyperons: promising observables for the EOS of symmetric matter at Nuclotron beam energies

Hyperon yield in heavy ion collisions at 4A GeV (BM@N energies): soft EOS (K=240 MeV) / hard EOS (K=350) MeV

10-1

10-2

10-3

10-4

10-5

BM@N

05.10.2021

 $(\times 0.02)$ $(\times 0.1)$ $+\overline{\Omega}^+$ (× 0.2)

⊼ (× 0.02) Ē^{*} (× 0.02)

CB, JP 31 (2005) S57

√s_{NN} (GeV)

 10^{2}

Reference measurement reduce:

- > systematic errors of experiment and theory
- contributions from SRC, in-medium cross sections, momentum-dependent interactions

Hypernuclei production in heavy-ion collisions

Statistical Hadronization Model: A. Andronic et al., Phys. Lett. B697 (2011) 203

A. Zinchenko

BM@

Detector geometry in future runs

4 station STS (CBM-type)

A. Zinchenko

Detector geometry in Run 8

05.10.2021

A. Zinchenko

Tracker performance

Detectors:	Si (3 stations) + GEMs (7 stations)	
Generator:	tor: DCM-SMM, $Xe+Sn$ at $T_0 = 3.9A$ GeV	
	$(\sqrt{s_{NN}} = 3.296 \text{ GeV}), 10 \text{k-5M} \text{ min. Bias events}$	
PID:	TOF (if needed)	
Statistics:	$\frac{K_{s}^{0}}{K_{s}^{0}}$ – 8818 within 50 cm of primary vertex (in 10k events)	
	Λ – 10225 within 50 cm of primary vertex (in 10k events)	
	Ξ − 111 in 10k (54175 in 5M)	
	$\Omega^{-} - 95$ in 5M	
	$_{\Lambda}$ H ³ – 6309 in 5M \rightarrow enriched $_{\Lambda}$ H ³ sample (randomly add 1 $_{\Lambda}$ H ³	
	per 30 events according to $y - p_T$ distribution) \rightarrow scale factor 27.4	

K⁰_s reconstruction in Run 8

Λ reconstruction in Run 8

Ξ^{-} reconstruction in Run 8

5M interactions

Detector geometry with TOF

Matching with TOF

Particle identification with TOF

05.10.2021

A. Zinchenko

$_{\Lambda}$ H³ reconstruction in Run 8

A. Zinchenko

Detectors:	STS + GEMs + TOF
Magnetic field:	B = 0.8 T
PID:	<i>beta</i> in TOF
Generator:	PHQMD, 0.5M events,
	Au+Au at $T_0 = 4$ A GeV, $b = 0$ -5 fm
Production rate :	Ξ - 529, ${}_{A}H^{3}$ - 1689 (per 10k events)

Ξ^{-} and $_{A}H^{3}$ reconstruction

Efficiency = (reconstructed, identified and selected *Hyp*) / (all generated *Hyp* after GEANT within 50 cm of PV) – *includes branching ratios, detector acceptance and reconstruction efficiency*

05.10.2021

17

 $_{A}H^{3}$ phase space

Summary and next steps

- BM@N detector is expected to be ready for the heavy-ion run in its full configuration
- Monte Carlo feasibility results show its good prospects for strangeness production studies
- Preparation of reconstruction and analysis methods and their software implementation is under way, as well as their testing on data from Monte Carlo simulation and technical BM@N runs with C and Ar beams in partial set-ups
- ✓ Use realistic geometry files for simulation: might require modifications / additions in track fitter.

This work was supported by the Russian Foundation for Basic Research (RFBR): grant No. 18-02-40036

05.10.2021