Performance studies for the future flow measurements in heavy-ion collisions

Petr Parfenov (MEPhl)
Arkadiy Taranenko (MEPhI)
Ilya Selyuzhenkov (GSI, MEPhI)

BM@N

Anisotropic flow in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=2-4 \mathrm{GeV}$

Strong energy dependence of $d v_{1} / d y$ and v_{2} at $\sqrt{s_{N N}}=2-4 \mathrm{GeV}$ out-of-plane to in-plane v_{2} at $\mathrm{Vs}_{\mathrm{NN}} \sim 3.3 \mathrm{GeV}$

Anisotropic flow at BM@N energies is a delicate balance between
I. pressure development early in the reaction zone
II. Shadowing by spectators due to long passage time

Why do we need new flow measurements with BM@N?

- Lack of differential flow measurements at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=2.3-3.3 \mathrm{GeV}$
- Difference between results from different experiments (e.g. FOPI vs. HADES) is the main source of existing systematic errors in v_{n} measurements
- Future $\mathrm{BM} @ \mathrm{~N}$ data for $\mathrm{Vs}_{\mathrm{NN}}=2.3-3.3 \mathrm{GeV}$) will provide detailed and robust v_{n} measurements

$v_{1,2}\left(\mathrm{p}_{\mathrm{T}}, \mathrm{y}\right)$ of protons in $\mathrm{Au}+\mathrm{Au} \mathrm{V}_{\mathrm{NN}}=2.4 \mathrm{GeV}$: model vs. HADES data

$A u+A u, 20-30 \% \quad(6<b<9 \mathrm{fm})$DCM-QGSM-SMM

UrQMD cascade mode
ψ HADES data

HADES data from: Phys. Rev. Lett. 125 (2020) 262301

Kinematic cuts:
$\mathrm{v}_{1}\left(\mathrm{p}_{\mathrm{T}}\right):-0.25<\mathrm{y}<-0.15$
$\mathrm{v}_{2}\left(\mathrm{p}_{\mathrm{T}}\right):-0.05<\mathrm{y}<0.05$
$\mathrm{v}_{1,2}(\mathrm{y}): 1.0<\mathrm{p}_{\mathrm{T}}<1.5 \mathrm{GeV} / \mathrm{c}$
$-0.79<\eta<0.96$ (HADES acceptance)

Cascade models are not a good choice for BM@N energy region

$v_{1,2}\left(\mathrm{p}_{\mathrm{T}}, \mathrm{y}\right)$ of protons in $\mathrm{Au}+\mathrm{Au} \mathrm{V}_{\mathrm{NN}}=2.4 \mathrm{GeV}$: model vs. HADES data

$A u+A u, 20-30 \% \quad(6<b<9 \mathrm{fm})$UrQMD hard SkyrmeSMASH hard Skyrme

- SMASH soft Skyrme
* HADES data

HADES data from: Phys. Rev. Lett. 125 (2020) 262301

Kinematic cuts:
$\mathrm{v}_{1}\left(\mathrm{p}_{\mathrm{T}}\right):-0.25<\mathrm{y}<-0.15$
$\mathrm{v}_{2}\left(\mathrm{p}_{\mathrm{T}}\right):-0.05<\mathrm{y}<0.05$
$\mathrm{v}_{1,2}(\mathrm{y}): 1.0<\mathrm{p}_{\mathrm{T}}<1.5 \mathrm{GeV} / \mathrm{c}$
$-0.79<\eta<0.96$ (HADES acceptance)

Better description of HADES data with mean-field and hard EoS

$v_{1,2}\left(\mathrm{p}_{\mathrm{T}}, \mathrm{y}\right)$ in $\mathrm{Au}+\mathrm{Au} \mathrm{V}_{\mathrm{NN}}=2.4 \mathrm{GeV}$: model vs. HADES data

JAM, $A u+A u, 20-30 \%$ ($6<b<9 \mathrm{fm}$)
MD3, K=380 MeV
\square MD2, K=210 MeV

- NS1, K=380 MeV
¡ NS2, K=210 MeV
* HADES data

K - nuclear incompressibility
HADES data from: Phys. Rev. Lett. 125 (2020) 262301

Kinematic cuts:
$\mathrm{v}_{1}\left(\mathrm{p}_{\mathrm{T}}\right):-0.25<\mathrm{y}<-0.15$
$\mathrm{v}_{2}\left(\mathrm{p}_{\mathrm{T}}\right):-0.05<\mathrm{y}<0.05$
$\mathrm{v}_{1,2}(\mathrm{y}): 1.0<\mathrm{p}_{\mathrm{T}}<1.5 \mathrm{GeV} / \mathrm{c}$
$-0.79<\eta<0.96$ (HADES acceptance)

Dependences of $v_{1} \& v_{2}$ on p_{T} and v_{2} on rapidity are very sensitive to the details of the EoS

$V_{1,2}\left(p_{T}, y\right)$ in $A u+A u V_{S_{N v}}=2.4 \mathrm{GeV}$: protons vs. neutrons

JAM, MD3, $A u+A u, 20-30 \%$ ($6<b<9 \mathrm{fm}$)

Kinematic cuts:
$\mathrm{v}_{1}\left(\mathrm{p}_{\mathrm{T}}\right):-0.25<\mathrm{y}<-0.15$
$\mathrm{v}_{2}\left(\mathrm{p}_{\mathrm{T}}\right):-0.05<\mathrm{y}<0.05$
$\mathrm{v}_{1,2}(\mathrm{y}): 1.0<\mathrm{p}_{\mathrm{T}}<1.5 \mathrm{GeV} / \mathrm{c}$
$-0.79<\eta<0.96$ (HADES acceptance)

Different p_{T} dependence of v_{2} for protons and neutrons

Simulation setup

System ${ }^{131} \mathrm{Xe}-{ }^{119} \mathrm{Sn}$
$V_{\mathrm{s}_{\mathrm{NN}}}=3.296 \mathrm{GeV}$
$p_{\text {beam }}=4.76 \mathrm{GeV} / \mathrm{c}$
$y_{\text {beam }}=y_{C M}=y_{\text {proj }} / 2=1.163$
$\mathrm{N}_{\text {events }}=90 \mathrm{~K}$
Model: DCM-QGSM-SMM
(version from Genis Musulmanbekov)

Simulation: GEANT4

Reconstruction:

- Tracking system (cluster finder)
- TOF (hit producer)
- FHCal (digitizer)

BMNROOT: bmnroot-digi branch from 2 August 2021 TOF400 geometry: create_rootgeom_TOF400_RUN8.C FHCal digitizer: code from zdc dev branch

Reconstructed vertex position and DCA

Asymmetry in reconstructed vertex position: bias of the magnetic field in tracking?
Asymmetry in DCA of π^{-}and π^{+}: use only protons for collision vertex reconstruction?

Acceptance: tracking only

Extrapolation according to the particle mass is important zig-zag structures for reco-track of pions

Acceptance: tracking + TOF PID
Momentum extrapolated to $\mathrm{z}=0$ using PDG; Require matched TOF hit

$$
y_{\text {beam }}=1.163
$$

There are no pions at midrapidity in TOF acceptance

Proton acceptance is very fragmented

Q:
Will there be track matching with both TOF400 and TOF700 hits?

How TOF hit is associated for the tracks that have hits in both TOFs?

TOF400 (RUN8) acceptance study

S1

Tested setups prepared using create_rootgeom_TOF400_RUN8.C

TOF400	Box1	Box2	Box3	Box4
S1	-150	-95	95	150
S2	-200	-145	145	200
S3	-250	-195	195	250
S4	-300	-245	245	300
S5	-350	-295	295	350

TOF400 acceptance needs to be optimized!

Particle identification with TOF400 + TOF700

Currently BmnTofMatching allows only matching of tracks with a hit from either TOF-400 or TOF-700, but not in both

Q: can this be fixed?

Particle identification: a closer look at the mismatched protons

Additional cuts for protons: $0<p<3 \mathrm{GeV} / \mathrm{c}$ $m^{2}<0.5\left(\mathrm{GeV} / \mathrm{c}^{2}\right)^{2}$

What can be done to improve the track to TOF hit matching?

FHCal studies

 FHCal digitizer provided by S. Morozov was used (link)

Multiplicity in tracking system vs. $\mathrm{E}_{\text {dep }}$ in FHCal

Q-vector distributions for mid-central collisions ($b=5-6 \mathrm{fm}$)

$$
Q_{1}=\sum_{k=0}^{M} E_{d e p} e^{i \varphi_{k}}=\left\{\begin{array}{l}
\sum_{k=0}^{M} E_{d e p} \cos \varphi \\
\sum_{k=0}^{M} E_{d e p} \sin \varphi
\end{array}\right.
$$

Event plane distributions for mid-central collisions $(b=5-6 \mathrm{fm})$

$$
\Psi_{E P}=\tan ^{-1}\left(\frac{Q_{1 y}}{Q_{1 x}}\right)
$$

Further investigation of acceptance corrections is needed

$1^{\text {st }}$ order event plane resolution correction factor

Observable for directed flow: $\quad v_{1}=\frac{\left\langle\cos \left(\varphi-\Psi_{E P}\right)\right\rangle}{\left\langle\cos \left(\Psi_{E P}-\Psi_{R P}\right)\right\rangle}$

Summary

Anisotropic flow at BM@N energy range:

- Cascade models fail to reproduce v_{n} and the models with incorporated mean-field theory with different EoS are required
- There's a difference between $\mathrm{v}_{2}\left(\mathrm{p}_{\mathrm{T}}\right)$ of protons and neutrons

Xe+Sn data with BM@N GEANT4 simulation and CA-tracking reconstruction:

- Asymmetry in reconstructed vertex position and DCA of pions
- Currently, there's a mismatching for protons where the proton track is associated with the pion hit in TOF400 / TOF700
- TOF400 acceptance should be optimized to improve acceptance of pions and protons, especially near mid-rapidity region
- Event plane determination using FHCal is implemented, corrections for the non-uniform acceptance should be further investigated

Backup

JAM microscopic model (ver. 1.90597)

NN collisions are simulated by:

- $\quad{ }^{\prime} \mathrm{sNN}<4 \mathrm{GeV}$: resonance production
- $4<\sqrt{ } \mathrm{sNN}<50 \mathrm{GeV}$: soft string excitations
- $\quad{ }^{\prime} \mathrm{sNN}>10 \mathrm{GeV}$: minijet production

RQMD with relativistic mean-field theory (non-linear σ - ω model) implemented in JAM model Different EOS were used:
-MD3 (momentum-dependent potential): $\mathrm{K}=380 \mathrm{MeV}, \mathrm{m} * / \mathrm{m}=0.65, \operatorname{Uopt}(\infty)=37$
-MD2 (momentum-dependent potential): K=210 MeV, m^*/m=0.83, Uopt(∞)=67
-NS1 (standard potential): K=380 MeV, m*/m=0.83
-NS2 (standard potential): K=210 MeV, m*/m=0.83

$\mathrm{v}_{1,3}\left(\mathrm{p}_{\mathrm{T},} \mathrm{y}\right)$ in $\mathrm{Au}+\mathrm{Au} V_{\mathrm{S}_{n N}}=2.4 \mathrm{GeV}$: model vs. HADES data

$A u+A u, 20-30 \% \quad(6<b<9 \mathrm{fm})$

DCM-QGSM-SMM

\square UrQMD cascade
₹ HADES data
Experimental data points were taken from: Phys. Rev. Lett. 125 (2020) 262301

Kinematic cuts:
$V_{1,3}\left(p_{T}\right):-0.25<y<-0.15$
$V_{1,3}(\mathrm{y}): 1.0<\mathrm{p}_{\mathrm{T}}<1.5 \mathrm{GeV} / \mathrm{c}$

$\mathrm{v}_{1,3}\left(\mathrm{p}_{\mathrm{T},} \mathrm{y}\right)$ in $\mathrm{Au}+\mathrm{Au} V_{\mathrm{S}_{n N}}=2.4 \mathrm{GeV}$: model vs. HADES data

$A u+A u, 20-30 \% \quad$ ($6<b<9 \mathrm{fm}$)
UrQMD hard Skyrme
\square SMASH hard Skyrme
A SMASH default Skyrme SMASH soft Skyrme HADES data
Experimental data points were taken from: Phys. Rev. Lett. 125 (2020) 262301

Kinematic cuts:
$\mathrm{V}_{1,3}\left(\mathrm{p}_{\mathrm{T}}\right)$: $-0.25<\mathrm{y}<-0.15$
$\mathrm{V}_{1,3}(\mathrm{y}): 1.0<\mathrm{p}_{\mathrm{T}}<1.5 \mathrm{GeV} / \mathrm{c}$

$\mathrm{V}_{1,3}\left(\mathrm{p}_{\mathrm{T}}, \mathrm{y}\right)$ in $\mathrm{Au}+\mathrm{Au} \mathrm{V}_{\mathrm{S}_{\mathrm{wN}}}=2.4 \mathrm{GeV}$: model vs. HADES data

JAM, $A u+A u, 20-30 \%$ ($6<b<9 \mathrm{fm}$)

\bigcirc	MD3
\square	MD2
$\boldsymbol{\square}$	NS1
\lessgtr	NS2
$ץ$	HADES dat

Experimental data points were taken from: Phys. Rev. Lett. 125 (2020) 262301

Kinematic cuts:
$V_{1,3}\left(p_{T}\right):-0.25<y<-0.15$
$\mathrm{V}_{1,3}(\mathrm{y}): 1.0<\mathrm{p}_{\mathrm{T}}<1.5 \mathrm{GeV} / \mathrm{c}$

$\mathrm{V}_{2,4}\left(\mathrm{p}_{\mathrm{T},} \mathrm{y}\right)$ in $\mathrm{Au}+\mathrm{Au} V_{\mathrm{S}_{n N}}=2.4 \mathrm{GeV}$: model vs. HADES data

$A u+A u, 20-30 \% \quad(6<b<9 \mathrm{fm})$

DCM-QGSM-SMM

\square UrQMD cascade

* HADES data

Experimental data points were taken from: Phys. Rev. Lett. 125 (2020) 262301

Kinematic cuts:
$V_{2,4}\left(p_{T}\right):-0.05<y<0.05$
$\mathrm{V}_{2,4}(\mathrm{y}): 1.0<\mathrm{p}_{\mathrm{T}}<1.5 \mathrm{GeV} / \mathrm{c}$

$\mathrm{V}_{2,4}\left(\mathrm{p}_{\mathrm{T},} \mathrm{y}\right)$ in $\mathrm{Au}+\mathrm{Au} V_{\mathrm{S}_{n N}}=2.4 \mathrm{GeV}$: model vs. HADES data

$A u+A u, 20-30 \% \quad$ ($6<b<9 \mathrm{fm}$)
UrQMD hard Skyrme
\square SMASH hard Skyrme
A SMASH default Skyrme SMASH soft Skyrme HADES data
Experimental data points were taken from: Phys. Rev. Lett. 125 (2020) 262301

Kinematic cuts:
$V_{2,4}\left(p_{T}\right):-0.05<y<0.05$
$\mathrm{V}_{2,4}(\mathrm{y}): 1.0<\mathrm{p}_{\mathrm{T}}<1.5 \mathrm{GeV} / \mathrm{c}$

$\mathrm{V}_{2,4}\left(\mathrm{p}_{\mathrm{T}}, \mathrm{y}\right)$ in $\mathrm{Au}+\mathrm{Au} \mathrm{V}_{\mathrm{S}_{n N}}=2.4 \mathrm{GeV}$: model vs. HADES data

JAM, $A u+A u, 20-30 \%$ ($6<b<9 \mathrm{fm}$)

\square	MD3
\square	MD2
\boldsymbol{A}	NS1
\lessgtr	NS2
ψ	HAD

Experimental data points were taken from: Phys. Rev. Lett. 125 (2020) 262301

Kinematic cuts:
$V_{2,4}\left(p_{T}\right):-0.05<y<0.05$
$\mathrm{V}_{2,4}(\mathrm{y}): 1.0<\mathrm{p}_{\mathrm{T}}<1.5 \mathrm{GeV} / \mathrm{c}$

Overview of the BM@N subsystems
relevant for charged hadron flow analysis

BMN setup overview

> Q: Do we have all planned detectors in the simulations?
> \quad Which are still missing?

Hybrid tracking system

based on 3 front silicon FwdSi planes and 7 GEM planes

Q: How CA tracker was optimized for BM@N?
When it will be integrated into the BMNROOT version,
which will be used for real data analysis?

Tracking system: FwdSi

consist of three planes, each made up of two halfs

- A module of the FwdSi silicon detector consists of two double-sided DSSD silicon detectors that are wired from strip to strip
- Sensitive volume of the detector is $63 \times 63 \times 0.3 \mathrm{~mm}^{3}$.
- Step for the $p+(n+)$ side is 95 (103) $\mu \mathrm{m}$.
- Stereo angle between stripes is 2.5 degrees,
the number of stripes on each side-is- 640
Is this is the design (3 FwdSi planes) planned to be used in 2022 data taking, any changes foreseen?

Tracking system: GEM

The measuring 2D readout plane of the GEM detector is 1632×450 mm^{2}

schematic view of the transverse structure of a triple GEM detector

- Signal is read in two coordinates by a set of parallel metal strips on the anode readout board.
- Vertical inclination angles of the lower layer strips (X coordinate) and upper layer strips (X (or Y) coordinate) ares 0 and 15 degrees.
- Strip's width along the X and X direction is 0.68 and $0.16 \mu \mathrm{~m}$.
- Strip pitch for both layers is $800 \mu \mathrm{~m}$.
GEM1
- Groups of 128 strips are connected to the ASIC inputs via a connector on the read plane.

Is this is the design (7 GEM planes) planned to be used in 2022 data taking, any changes foreseen?

Time of Flight: TOF-400 \& TOF-700

Time resolution of the ToF system 80-100 ps

Schematic view of the $(5+5)$ mRPCs TOF-400 wall and its position behind the analyzing magnet
@ 4m from the target

Placement of 40 "warm" and 18 "cold" mRPCs on the plane of the TOF-700 wall
@ 7m from the target

Is this is the design (TOF-400+700) planned to be used in 2022 data taking, any changes foreseen?

FHCAL calorimeter

FHCal Calorimeter is located at a distance of 9 m from the target and consists of 54 individual modules in the transverse plane

Outer part: 20 modules with transverse dimensions $20 \times 20 \mathrm{~cm}^{2}$ Inner part: 34 modules with transverse dimensions $15 \times 15 \mathrm{~cm}^{2}$
beam hole in the center with a transverse dimension of $15 \times 15 \mathrm{~cm}^{2}$

20 cm		$15 \mathrm{~cm}$									
35	36	1	2	3	4	5	45	46	EOO	$\begin{aligned} & \text { 틈 } \\ & \text { O} \end{aligned}$	
		6	7	8	9	10					
37	38	11	12	13	14	15	47	48			
39	40	16	17	$\xrightarrow{\text { tole }}$	18	19	49	50			
41	42	20	21	22	23	24	51	52			
		25	26	27	28	29					
43	44	30	31	32	33	34	53	54			
75 cm											
155 cm											

Is this is the design (FHCAL module layout) planned to be used in 2022 data taking, any changes foreseen?

Simulation: geometry configurations

Subsystem	Geometry file	comments
Cave	Cave.geo	
Pipe	none	
Target	Target_0cm.geo	Single event in (0,0,0)
Magnet	magnet_modified.root	Field $=0.81 \mathrm{~T}$
Tracking system	sigems2021.root	3 Fwd Si + 7 GEM plates
TOF400	TOF400_RUN8.root	$5+5 \mathrm{mRPC}$
TOF700	tof700_run7.root	40 "warm" + 18 "cold" mRPC
BD	none	
Ecal	ECAL_v3_run7_pos4.root	Placed after GEM plates
ZDC	zdc_oldnames_CBM_20mods_NICA_34mods_ 54 mods_hole_Zpos_878.1cm_Xshift_49.50cm _Yshift_0.0cm_rotationY_0.0deg_v1.root	34 modules $15 \times 15 \mathrm{~cm}^{2}+$ 20 modules $20 \times 20 \mathrm{~cm}^{2}$

Q: Is it possible to include the target material (thickness) into simulations?

Simulated output structure

Simulated (sim)

C++ Class	Name
FairMCEventHeader	MCEventHeader
TClonesArray(CbmMCTrack)	MCTrack
TClonesArray(CbmStsPoint)	StsPoint
TClonesArray(BmnTOF1Point)	TOF400Point
TClonesArray(BmnTOFPoint)	TOF700Point
TClonesArray(BmnZdcPoint)	MCEventHeader

Note:

sim information is stored in a separate files from reco Both set of files are needed for simulation studies

Both (reco \& sim) trees are called "bmndata": Q: use different names to avoid confusion?

Reconstructed (reco)

C++ Class	Name
FairEventHeader	EventHeader
CbmVertex	PrimaryVertex
BmnZDCEventData	ZDCEventData
TClonesArray(CbmStsDigi)	StsDigi
TClonesArray(CbmStsDigiMatch)	StsDigiMatch
TClonesArray(CbmStsCluster)	StsCluster
TClonesArray(CbmStsCluster)	StsClusterCand
TClonesArray(CbmStsHit)	StsHit
TClonesArray(CbmStsTrack)	StsTrack
TClonesArray(CbmStsTrackMatch)	StsTrackMatch
TClonesArray(BmnTofHit)	BmnTof400Hit
TClonesArray(BmnTofHit)	BmnTof700Hit
TClonesArray(BmnTofMatch)	TofMatch
TClonesArray(BmnZDCDigit)	ZDC

Performance plots from simulations

- Reconstructed vertex position
- Distance of closest approach (DCA)
- Number of track hits for Fwd-Si and GEM tracks
- track multiplicity vs. FHCal energy
- STS track extrapolation (π^{-}, π^{+}, protons)
- TOF matching
- $\mathrm{p}_{\mathrm{T}}-\mathrm{y}$ acceptance:
- Tracking
- TOF400 + Tracking
- TOF700 + Tracking

Reconstructed vertex: comparison with A. Zinchenko

Consistent results

Distance of closest approach (DCA): primary π^{+}, π^{+}and protons

$D C A_{x}$ and $D C A_{y}$ are calculated at the reconstructed vertex position $\left(D C A_{z}=0\right)$
Q: Why π^{-}and π^{+}DCA $_{x}$ are asymmetric, while protons are symmetric?
Use only protons for collision vertex reconstruction?

Track multiplicity vs. FHCal energy

GEANT4 should be used to model the loss of the projectile spectator fragment in the beam hole of the FHCAL

ZDCEventData.fE

Number of track hits for Fwd-Si and GEM tracks

Q: Is it possible to store the $\mathrm{N}_{\text {hits }}$ for FwdSi and GEM

Track extrapolation to vertex $\left(\pi^{-}\right)$

No extrapolation

information from the reconstructed track

PDG

extrapolation using pdg code

assume π^{+}or π^{-}

extrapolation assuming the track is a pion

Using pion mass for extrapolation of the π^{-}tracks gives consistent result

Track extrapolation to vertex $\left(\pi^{+}\right)$

No extrapolation

information from the reconstructed track

PDG

extrapolation using pdg code

assume π^{+}or π^{-}

extrapolation assuming the track is a pion

Using pion mass for extrapolation of the π^{+}tracks gives consistent result

Track extrapolation to vertex (protons)

No extrapolation

information from the reconstructed track

PDG

extrapolation using pdg code
assume π^{+}or π^{-}
extrapolation assuming the track is a pion
Assuming pion mass for extrapolation of the protons tracks gives wrong result

To compare with simulated tracks the reconstructed tracks have to be extrapolated to
the primary collision vertex position (currently $\mathrm{z}=0$)
Q:
Can a common Getter() be added to the BMNROOT to perform this extrapolation?

Particle identification with TOF-400

[^0]
Particle identification with TOF700

Q: \quad More mismatch is present in TOF-700 strong non-flat dependence with
momentum

Q: What can be done to improve the track to TOF hit matching?

How the current algorithm is implemented? Is the matching radius of 10 cm a rough estimation that needs to be optimized in the future?

Acceptance: true MC

$$
y_{\text {beam }}=1.163
$$

Simulated vs reconstructed: Momentum
Zinchenko's plots

$\mathrm{p}^{\text {sim }}$ vs $\mathrm{p}^{\text {reco }}$ distributions, pid 2

Simulated vs reconstructed: Rapidity
Zinchenko's plots

Simulated vs reconstructed: Azimuthal angle

$\varphi^{\text {sim }}$ vs $\varphi^{\text {reco }}$ distributions, pid 1

Track quality parameters I

Track quality parameters II

Track quality parameters III

[^0]: Q: Mismatch is present in TOF-400

