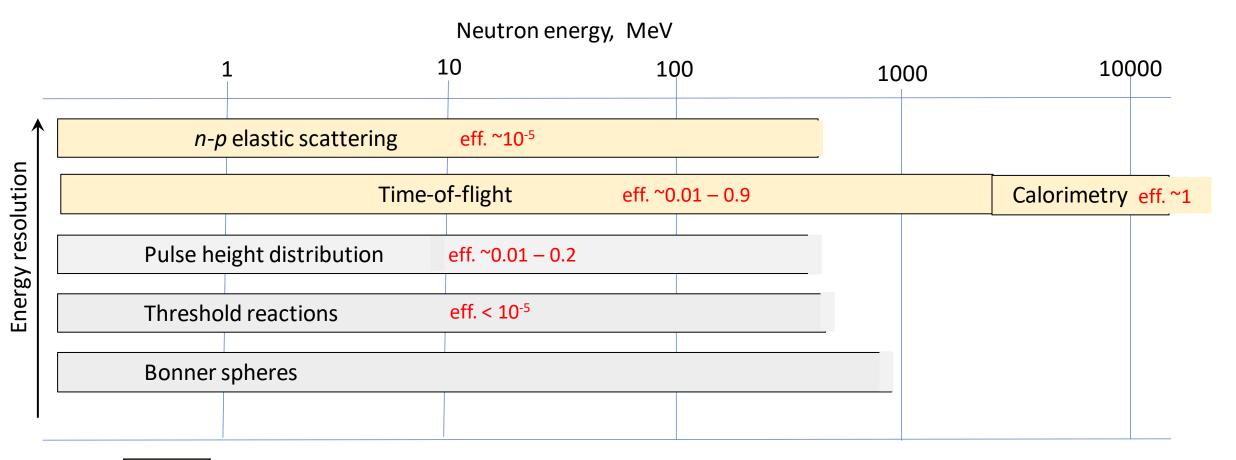

Study of neutron production in nucleus-nucleus collisions Addendum to BM@N program

Content:

- 1. Status of neutron data and neutron spectrometry
- 2. Aim of neutron measurements
- 3. Phenomenological picture of neutron emission
- 4. Project of neutron measurements at BM@N
- Methods for study of neutron emission in AA- collisions
- Layout of neutron detectors
- Neutron energy spectra
- Detectors with stilbene crystals
- Forward neutron detector
- Neutron Zero-Degree Calorimeter
- Status of the neutron detectors

Status of neutron data


- Mainly the data were obtained with proton beam lacksquare
- Neutron spectra measurements without selection on centrality ۲


```
TOF measurements of neutron spectra
            p + A collisions
         (LANL, SATURNE, JINR, ITEP,
              KEK, CERN)
              A + A collisions
    (LBNL, JINR, HIMAC, GSI, AGS, CERN)
        Neutron spectra were measured
     \checkmark
        with min. bias trigger
        (no selection on centrality)
```

Basic Methods of Neutron Spectrometry

– definite correspondence between energy and measured value

 – complicated unfolding procedure with well-known response functions and some a priori information about neutron spectrum is required

Calorimeters

Detection efficiency of neutrons above 5 GeV ~ 100%

Examples

SPACAL calorimeter

Large number of layers Pb / plastic scintillator (20%) Energy resolution: $a = 0.306 \text{ GeV}^{1/2}$, b = 0.01

E864 calorimeter

Spaghetti type calorimeter. Array from 58×13 modules, each module 10×10×117 cm Pb/scintillator with ratio Pb : scintillator = 4.55 : 1 (in volume) Energy resolution: a = 0.34 GeV^{1/2}, b = 0.035Time resolution: $\sigma_t = 0.4$ ns

E814 calorimeter

Layers of U-Cu-scintillator with thickness of 4.2 inter. lengths Energy resolution: $a = 0.37 \text{ GeV}^{1/2}$, $b \approx 0$

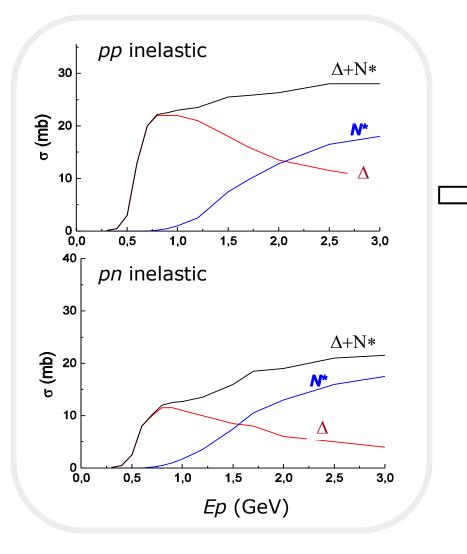
E	= 1 GeV						
	1001	E = 1 GeV $E = 5 GeV$					
<i>L</i> = 2.5 m	7.9	58					
<i>L</i> = 5 m	4	30					
<i>L</i> = 10 m	2	15					

		σ _⊧ / <i>E</i> (%)	
	<i>E</i> = 1 GeV	<i>E</i> = 5 GeV	<i>E</i> = 10 GeV
SPACAL E864 E814	31.6 37.5 37	14.7 18.7 16.5	10.7 14.2 11.7

TOF spectrometers with organic scintillators

Accelerator	Detector (cm)	Efficiency	Path (m)	σ_t (ns/m)	n/γ	Type*	Status
LAMPF/LANL	BC418 D5.08x5.08, D5.08x2.5 BC501 D25.4×5.1, D30.5×20.3 NE213 D10.2×10.2	Exp./Calc. Calc. Calc.	29 - 50	0.034 - 0.02	No Yes Yes	SC	Active
SATURNE / Saclay	NE213 D12.7x5.1 NE213 D16x20	Exp./Calc.	8.5	0.24 0.18	Yes Yes	SC	
Synchrophasotron / JINR	Stilbene D4x1 Stilbene D5x5 Plast. scintill. D12x20	Exp. Exp./Calc. Exp.	0.5 - 0.7 0.7 - 1.2 1.5 - 2	0.8 0.7 - 0.4 0.3 - 0.25	Yes Yes No	OG	
Synchrotron / ITEP	Plast. scintill. D20x20	Exp./Calc.	1.5	0.3	No	OG	
Synchrotron / ITEP	Liquid scintill. D12.7x15.2 NE110 20x20x11.5	Calc.	2, 3	0.3, 0.2	Yes No	OG	
PS / KEK	NE213 D5.08x5.08, D12.7x12.7	Exp./Calc.	0.6 - 0.9 1 - 1.5	0.8 - 0.6 0.5 - 0.3	Yes Yes	OG	Active
HIMAC/NIRS	NE213 D12.7x12.7	Exp./Calc.	3 - 5	0.3 - 0.2	Yes	OG	Active
Cyclotron / iThemba LABS	NE213 D5.08x10.16	Exp./Calc.	8	0.13	Yes	SC	Active

SC – shielding and collimators, fixed angles


OG – open geometry

Aim of neutron measurements

- ✓ Neutron production double differential cross sections
- ✓ Neutron multiplicity distribution
- ✓ Neutron production dependence on centrality of AA- collisions
- ✓ Neutron production dependence on size of colliding nuclei
- ✓ Contribution of different stages of nuclear system decay to neutron production
- \checkmark Estimation of temperature and velocity of neutron sources
- ✓ Estimation of neutron collective flow as a function of centrality and reaction plane

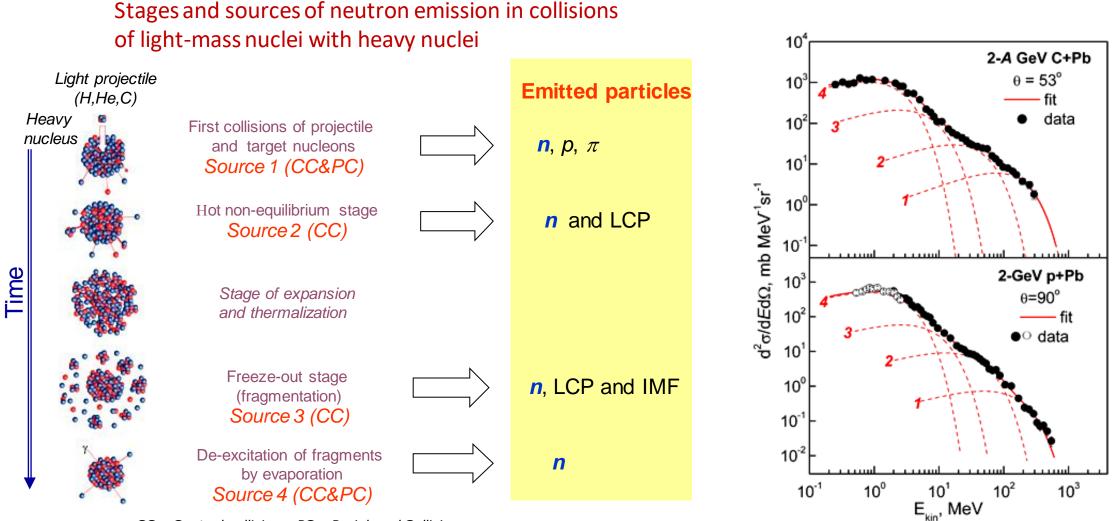
These results will be unique and very useful for development of theoretical models and codes.

Nucleus – nucleus collisions and neutron emission at BM@N energies

Wave length of nucleon:

1000 MeV $\rightarrow \lambda \sim 0.7 \text{ fm}$ 100 MeV $\rightarrow \lambda \sim 2.7 \text{ fm}$ 10 MeV $\rightarrow \lambda \sim 9 \text{ fm}$

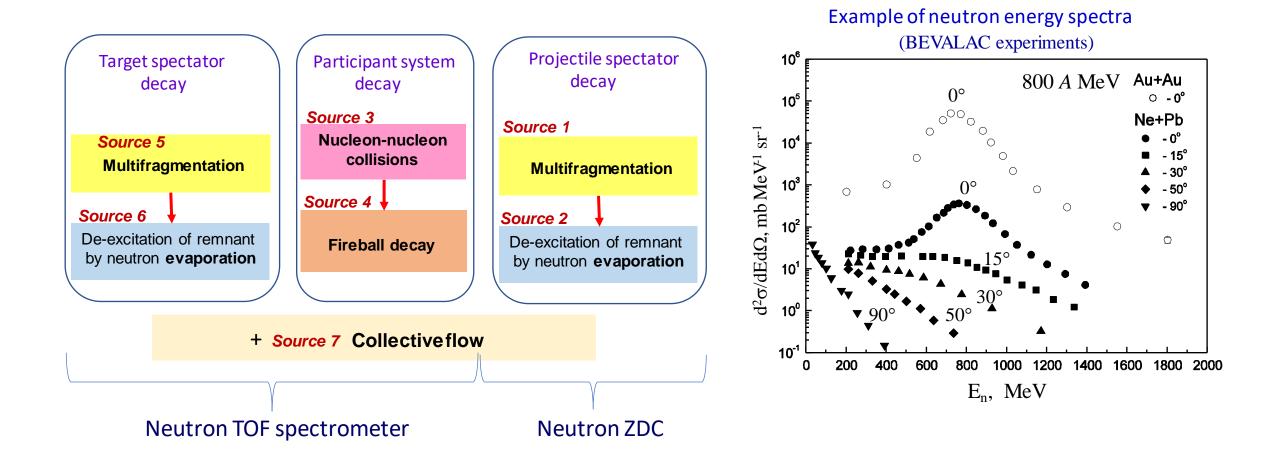
In energy region > 0.7 GeV the free path length of nucleon in nuclear matter $\lambda_{\rm I} \sim 1$ fm and heavy nucleus becomes very thick target.


AA- collisions at BM@N energies characterized by

• Formation of hot and dense baryonic matter in participant region

• High excitation of target and beam nuclear spectators

High multiplicity of emitted neutrons at all stages of nuclear system decay


Phenomenological picture of neutron emission

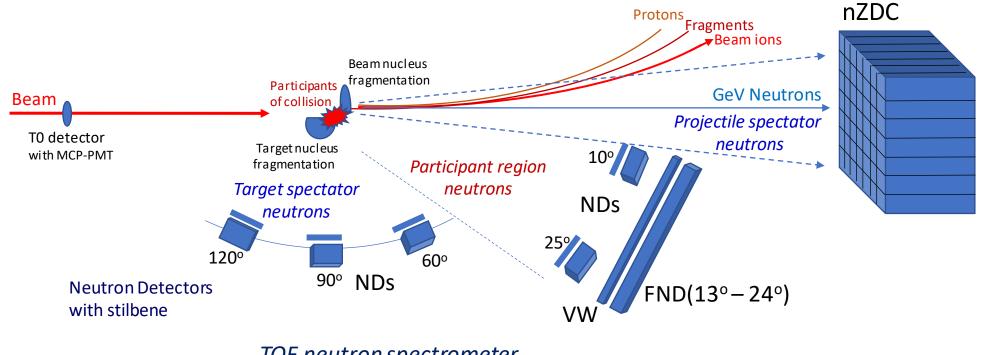
CC – Central collisions, PC – Peripheral Collisions

Phenomenological picture of neutron emission

Neutron emission in collisions of heavy nuclei

Project of neutron measurements at BM@N

Methods for study of neutron emission in AA- collisions


Decayed system	Main Stages / sources	Kinematics	Method	Detectors*	Energy range
Target spectator	Fragmentation Evaporation	Near isotropic emission	TOF with σ _t < 100 ps and 40 cm flight path	ND	0.5 < E < 200 MeV
Hot source (participant region)	Inter-nuclear cascade Decay of hot fireball	Forward angle emission	TOF with $\sigma_{ m t}$ < 100 ps and 3 m flight path	ND / FND	100MeV< E <3GeV
Beam spectator	Fragmentation Evaporation	Zero-degree emission	Hadron calorimeter	nZDC	> 3 GeV

• ND – neutron detectors with stilbene crystals and SiPM readout FND – forward neutron detector

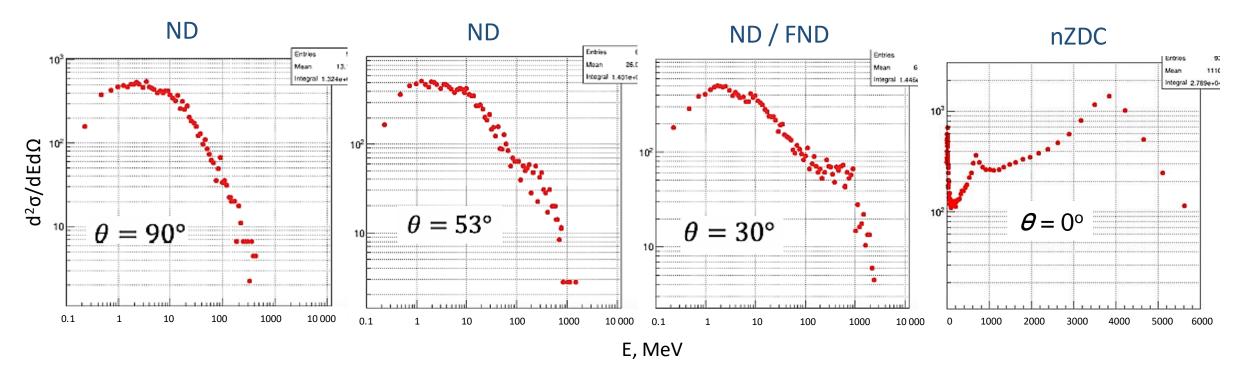
nZDC – neutron zero-degree calorimeter

Project of neutron measurements at BM@N

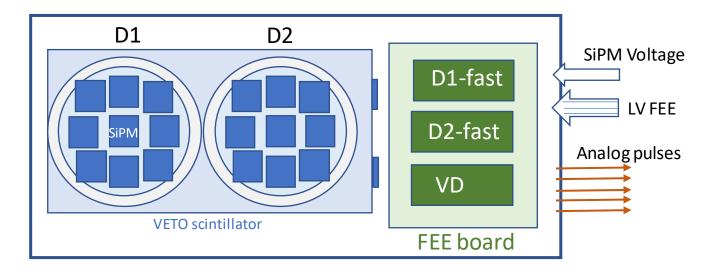
Layout of neutron detectors

TOF neutron spectrometer

 σ_t < 100 ps for high-energy neutrons


nZDC – neutron zero-degree calorimeter FND – forward neutron detector ND – neutron detector with stilbene VW – veto wall

Project of neutron measurements at BM@N


Neutron energy spectra

DCM-QGSM simulation N. Lashmanov

Au + Au , 4.2 A GeV

Detector with 2 stilbene crystals 1"diam. x 1" from Inrad Optics (USA) and SiPM readout

Why stilbene?

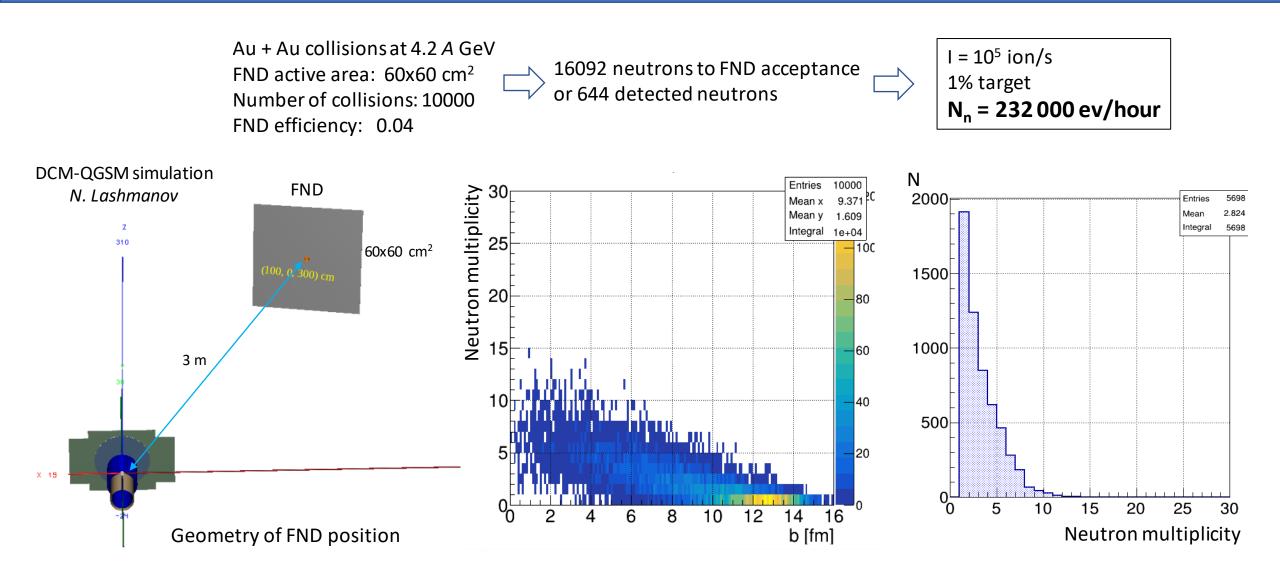
Stilbene provides n/γ pulse shape discrimination with large suppression of background

Stilbene crystal from Inrad Optics (USA) 10 units are available for detector production

Veto scintillator 80x40x5 mm 20 SiPMs 6 x 6 mm² J-ser. SensL DAQ electronics: TQDC modules (5 ch. per detector)

Estimation of event statistics

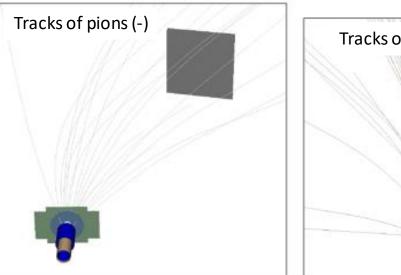
Experimental conditions

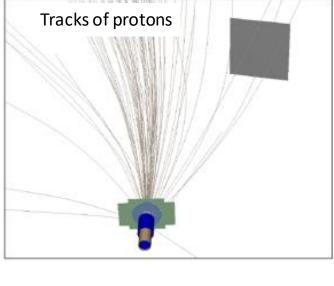

Au + Au collisions at 4.2 A GeV

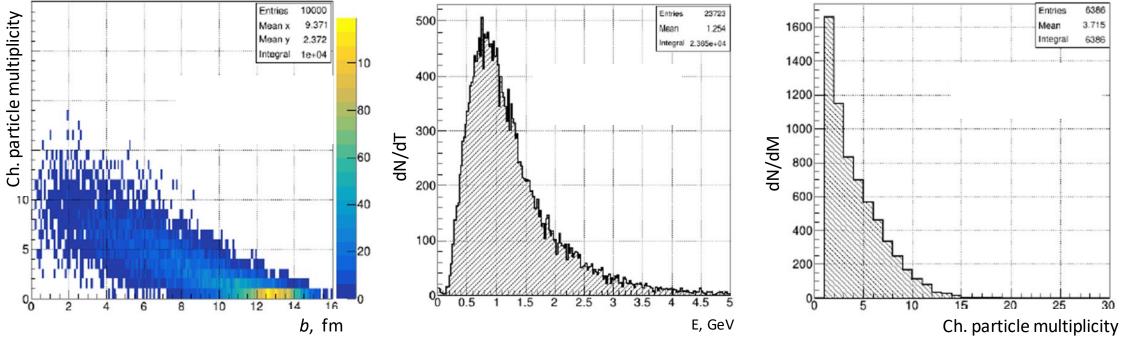
- TOF path: L = 40 cm
- Beam intensity: I = 10⁵ ion/s
- Probability of interaction in target: P = 0.01
- ND efficiency: ε = 0.15 (2-5 MeV)

Number of neutrons detected with ND per hour

16500 (60°) 10400 (90°) 8500 (120°)

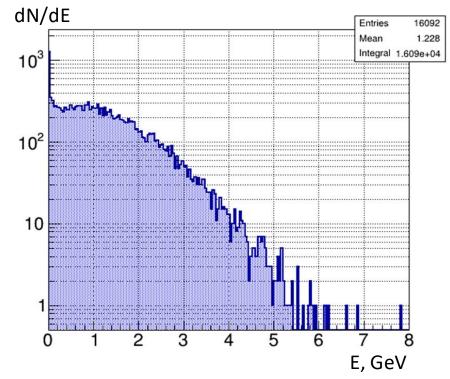

Statistics of neutron events per detector for 20-hour run: $N_n = 330\ 000\ ev\ (60^\circ)$ 208 000 ev (90°) 170 000 ev (120°)




Ch. particle background to FND

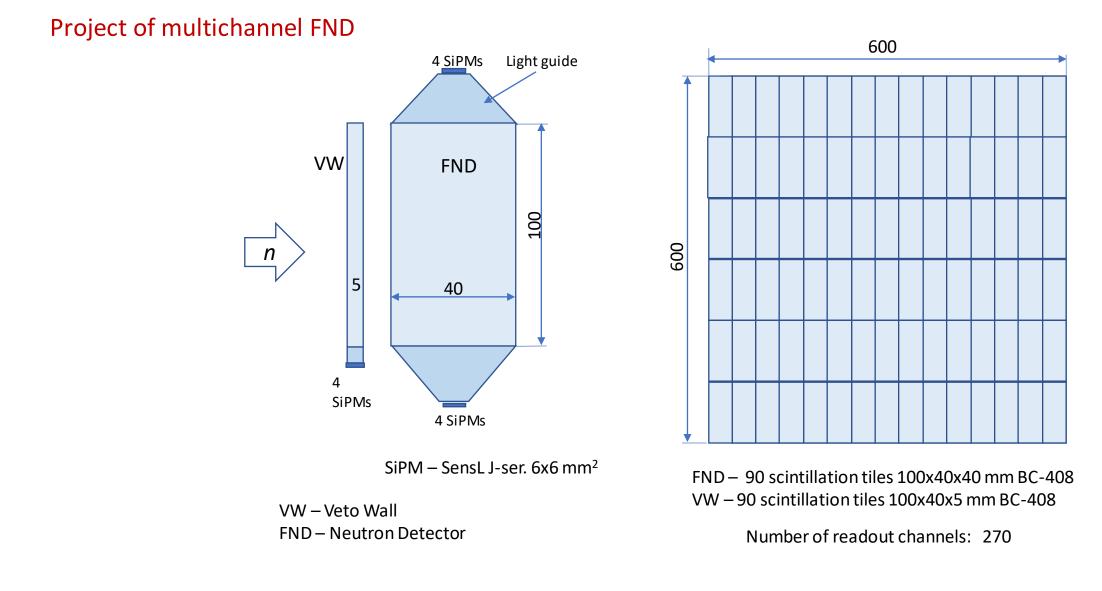
DCM-QGSM simulation *N. Lashmanov*

Au + Au collisions at 4.2 A GeV FND active area: 60x60 cm² Number of collisions: 10000



Energy resolution of FND

DCM-QGSM simulation N. Lashmanov

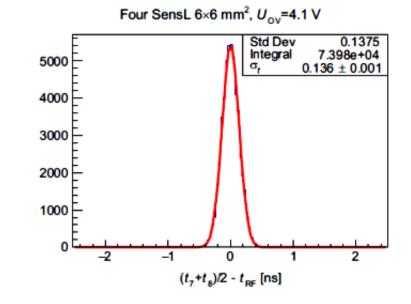


For flight path of 3 m and σ_t = 100 ps

Ekin (MeV)	γ	β	σε/Ε (%)
50	1.053	0.313	0.69
100	1.106	0.427	1.00
250	1.266	0.613	1.77
500	1.532	0.758	3.00
1000	2.064	0.875	5.58
2000	3.13	0.948	12.4

 $σ_E/E = γ(γ+1)[(σ_L/L)^2 + (σ_t/t)^2]^{1/2} ≈ γ(γ+1)[βσ_t/(L/c)]$ $E_k = m_0 c^2(γ-1)$ $γ = 1 + E_k/m_0 c^2$

Energy spectrum of neutrons in FND acceptance for Au + Au collisions at 4.2 A GeV



For detection of 200–1000 MeV neutrons, the NeuLAND neutron time-of-flight detector at FAIR uses 3000 monolithic scintillator bars of 270 x 5 x 5 cm³ size made of a fast plastic. Each bar is read out on the two long ends, and the needed time resolution is σ_t < 150 ps.

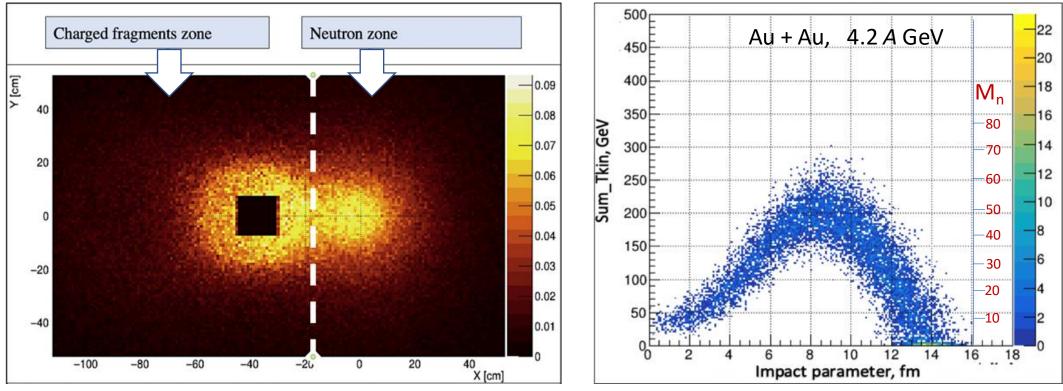
Scintillator size in mm ³	SiPM (mm ²)	Simula	tion	Experim	ent
		n _{FP}	σ_t^{sim}	n ^{exp}	σ_t^{\exp}
100 × 42 × 11	1 × 1	20	370	10	340
	3 × 3	270	140	40	170
	6 × 6	980	60	150	94
$100 \times 11 \times 42$	1 × 1	35	280	21	270
	3 × 3	300	130	160	150
	6 × 6	1160	67	≥ 280	(72)
2700 × 50 × 50	1 × 1	7	1300	4	870
	3 × 3	64	420	24	400
	6 × 6	250	230	≥ 125	240
	Four 6×6	860	124		(135

Arrays of four 6 x 6 mm² SiPMs each were built and studied

Producer and type	A (mm ²)
Ketek PM1150	1×1
Ketek PM3350	3×3
Excelitas C30742-33	3 × 3
SensL C-series	6 × 6
FBK NUV	6×6

T. P. Reinhardt et al. Silicon photomultiplier readout of a monolithic 270x5x5 cm³ plastic scintillator bar for time of flight applications, NIMA 816 (2016) 16–24

Scintillator bar of 270 x 5 x 5 cm³ with 4- SiPMs arrays: 99% efficiency and σ_t = 136 ps


Neutron Zero-Degree Calorimeter (nZDC)

DCM-QGSM simulation N. Lashmanov

nZDC is the BM@N hadron calorimeter It detects neutrons of beam spectator for each collision

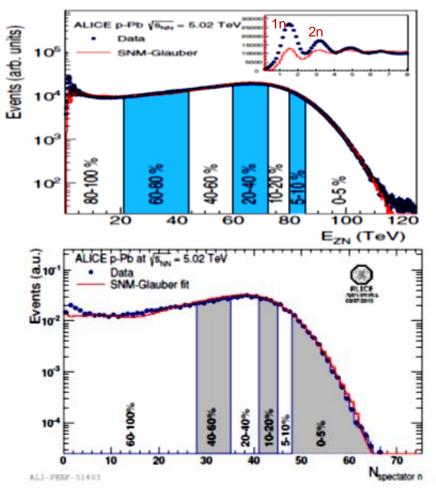
nZDC aim

- Neutron multiplicity from beam spectator decay
- Determination of reaction plane?

Incoming energy of fragments in FHCal

Neutron Zero-Degree Calorimeter (nZDC)

Determination of reaction plane with nZDC


In semi-central Au + Au collisions the nZDC response corresponds to 25 - 70 neutrons or 100 - 280 GeV.

Topic for study \rightarrow Can it be used for determination of reaction plane?

Calibration of nZDC

A possible procedure is to study neutron response of nZDC with beam trigger in AA- collisions at 4 A GeV. In very peripheral AA- collisions the excitation of giant resonance in a target and a projectile nuclei has large cross section. In the last case it decays with emission of 1 - 3 neutrons of beam energy to nZDC. Energy calibration of nZDC is based on observation of these peaks at 4, 8 and 12 GeV.

Example of ALICE nZDC

Status of the neutron detectors

nZDC - available FHCal

It has to be moved to cover 50-cm area around zero-degree position.

 ND with stilbene crystals - 20 crystals and SiPMs are available for production of 10 neutron detectors. The detectors will be produced in 2022.
 4 modules of TQDC are required for data taking.

FND - scintillators, SiPMs, light guides, readout electronics have to be purchased. The FND project might be realized for period of 2022 – 2024 (JINR, INR).