



# Small angle neutron scattering spectrometer YuMO. Status and prospects

O. Ivankov, D. Soloviov, A.I. Kuklin

54th meeting of the PAC for Condensed Matter Physics









Remote PC

Kuklin, A.I., Ivankov O.I., Rogachev A.V., Soloviov D., Islamov A., Skoi V.V., Kovalev Y., Vlasov A., Rizhikau Y.L., Soloviev A., Kucerka N., Gordeliy V., *Small-Angle Neutron Scattering at the Pulsed Reactor IBR-2: Current Status and Prospects.* Crystallography Reports, 2021. **66**(2): p. 230-241.





### Main parameters of the YuMO spectrometer

| Parameters                                             | Value                                                                                                                                              |  |  |  |  |  |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Flux on the sample (thermal neutrons)                  | $10^7 \div 4x10^7 \text{ n/(s cm^2)} [1]$                                                                                                          |  |  |  |  |  |
| Used wavelength                                        | 0.7 Å to 8 Å (10 Å with 30K cold moderator)#                                                                                                       |  |  |  |  |  |
| Q-range                                                | $7x10^{-3} \div 0.5 \text{ Å}^{-1} (\sim 4x10^{-3} \div 0.5 \text{ Å}^{-1})$                                                                       |  |  |  |  |  |
| Dynamic Q-range                                        | $q_{max}/q_{min}$ up to 100                                                                                                                        |  |  |  |  |  |
| Specific features                                      | Two detectors system, central hole detectors                                                                                                       |  |  |  |  |  |
| Accessible size range of the structural features under | 1000 ÷ 10 Å                                                                                                                                        |  |  |  |  |  |
| investigation *                                        |                                                                                                                                                    |  |  |  |  |  |
| Intensity (absolute units -minimal levels)             | 0.01 cm <sup>-1</sup>                                                                                                                              |  |  |  |  |  |
| Calibration standard                                   | Vanadium during the experiment                                                                                                                     |  |  |  |  |  |
| Beam dimension at the sample position                  | 14 mm diameter                                                                                                                                     |  |  |  |  |  |
| Collimation system                                     | Axial                                                                                                                                              |  |  |  |  |  |
| Detectors                                              | <sup>3</sup> He filled, , 8 independent wires, in-house design                                                                                     |  |  |  |  |  |
| Detector (direct beam)                                 | <sup>6</sup> Li-convertor in-house design                                                                                                          |  |  |  |  |  |
| Sample changer                                         | Placed in the custom made box, in air                                                                                                              |  |  |  |  |  |
| Q-resolution                                           | low, 5-20%                                                                                                                                         |  |  |  |  |  |
| Tomporatura ranga                                      | 4°C - + 70°C (standard Hellma cells, 1mm, 2mm pathlength)                                                                                          |  |  |  |  |  |
|                                                        | -20°C - + 130°C (custom designed sample holders required)^                                                                                         |  |  |  |  |  |
| Number of the samples in the automated sample changer  | 25 ***                                                                                                                                             |  |  |  |  |  |
| Background intensity                                   | $0.03 - 0.2 \text{ cm}^{-1}$                                                                                                                       |  |  |  |  |  |
| Average single seta data collection time               | 1 h                                                                                                                                                |  |  |  |  |  |
| Source pulse frequency                                 | 5 Hz                                                                                                                                               |  |  |  |  |  |
| Control computer Operating system                      | WINDOWS 10                                                                                                                                         |  |  |  |  |  |
| The instrument control software suit                   | SONIX [6]                                                                                                                                          |  |  |  |  |  |
| Controlling parameters                                 | Starts (time of experiments), power, vanadium standard position, samples position, samples changer temperature, vacuum level in the detectors tube |  |  |  |  |  |



JOINT INSTITUTE FOR NUCLEAR RESEARCH



### **User program for IBR-2 facility**







### Web of science summary

|       | <b>1</b> ,<br>не                                   | , <b>600</b><br>ЕLMHO    | LTZ AS            | SOCIAT   | ION    |                    | 1                                                          | 1,166<br>NSTITUT  | LAUE   | LANGE  | VIN ILL | 75<br>0A<br>LAI                            | K RIDG<br>BORAT | E NATIO<br>DRY | DNAL                                          | 668<br>RESEA<br>JULICH | RCH CI | ENTER      | 645<br>JNIVE                                                | AY                                       | PARIS   |        |
|-------|----------------------------------------------------|--------------------------|-------------------|----------|--------|--------------------|------------------------------------------------------------|-------------------|--------|--------|---------|--------------------------------------------|-----------------|----------------|-----------------------------------------------|------------------------|--------|------------|-------------------------------------------------------------|------------------------------------------|---------|--------|
|       | <b>1,279</b><br>UNITED STATES DEPARTMENT OF ENERGY |                          |                   |          |        | irig <b>8</b><br>N | 870<br>NATIONAL INSTITUTE OF STANDA<br>TECHNOLOGY NIST USA |                   |        |        |         | 604<br>Bhabha atomic<br>Research center ba |                 |                | 538<br>STFC RUTHERFORD<br>F APPLETON LABORATO |                        |        | o FORE     | <b>422</b><br>JOINT INSTITUT<br>FOR NUCLEAR<br>RESEARCH RUS |                                          |         |        |
|       | <b>1</b> ,<br>sc                                   | ,268<br>Intre<br>Cientif | NATION<br>FIQUE C | IAL DE I | LA REC | HERCH              | E 7                                                        | 7 <b>99</b><br>Ea |        |        |         | 54<br>SCI<br>FAC                           |                 |                | DLOGY<br>ICIL STI                             | 529<br>UK RE           | ESEARC | CH<br>UKRI | 4 <sup>·</sup><br>NA<br>RE<br>CE<br>KU                      | 14<br>SEARC<br>NTRE<br>IRCHAT<br>STITUTE | Ĥ<br>OV |        |
| 600 - |                                                    |                          |                   |          | -      |                    |                                                            |                   |        |        | -       | _                                          |                 |                |                                               |                        |        |            |                                                             |                                          |         |        |
| 550 - |                                                    |                          |                   |          |        |                    |                                                            | -                 |        |        |         |                                            |                 |                | _                                             | _                      |        |            |                                                             |                                          |         |        |
| 500 - |                                                    |                          |                   |          |        |                    |                                                            |                   | _      |        |         |                                            |                 |                |                                               |                        |        |            |                                                             | _                                        |         |        |
| 450 - |                                                    |                          |                   |          |        |                    |                                                            |                   |        |        |         |                                            |                 |                |                                               |                        |        |            |                                                             |                                          |         |        |
| 350 - |                                                    |                          |                   |          |        |                    |                                                            |                   |        |        |         |                                            |                 |                |                                               |                        |        |            |                                                             |                                          |         |        |
| 300 - |                                                    |                          |                   |          |        |                    |                                                            |                   |        |        |         |                                            |                 |                |                                               |                        |        |            |                                                             |                                          |         |        |
| 250 - |                                                    |                          |                   |          |        |                    |                                                            |                   |        |        |         |                                            |                 |                |                                               |                        |        |            |                                                             |                                          |         |        |
| 200 - |                                                    |                          |                   |          |        |                    |                                                            |                   |        |        |         |                                            |                 |                |                                               |                        |        |            |                                                             |                                          |         |        |
| 150 - |                                                    |                          |                   |          |        |                    |                                                            |                   |        |        |         |                                            |                 |                |                                               |                        |        |            |                                                             |                                          |         |        |
| 100 - |                                                    |                          |                   |          |        |                    |                                                            |                   |        |        |         |                                            |                 |                |                                               |                        |        |            |                                                             |                                          |         |        |
| 50 -  |                                                    |                          |                   |          |        |                    |                                                            |                   |        |        |         |                                            |                 |                |                                               |                        |        |            |                                                             |                                          |         |        |
| 0     | - 2021                                             | - 2020                   | - 2019            | - 2018   | - 2017 | - 2016             | - 2015                                                     | - 2014            | - 2013 | - 2012 | - 2011  | - 2010                                     | - 2009          | - 2008         | - 2007                                        | - 2006                 | - 2005 | - 2004     | - 2003                                                      | - 2002                                   | - 2001  | - 2000 |





### **Russian Science Foundation Projects in JINR**



19 - winning projects RSF in JINR 10 - FLNP laboratory 7 – YuMO related projects

## RSF Projects implemented on the large research infrastructure facilities

 IBR-2 is one from 18 winning from 189 facilities in 2019.
4 projects for IBR-2 facility were approved for funding 3 projects requires SANS measurements

| <b>1,068</b><br>NATIONAL SCIENCE FOUNDATION NSF | 509<br>MINISTRY OF EDUCATION CULT<br>SPORTS SCIENCE AND<br>TECHNOLOGY JAPAN MEXT | 413<br>GERMAN RESEARCH<br>FOUNDATION DFG                     | <b>399</b><br>grants in aid for<br>scientific researc<br>kakenhi | 372<br>ENGINEERING<br>PHYSICAL SCIENCE<br>RESEARCH COUNC<br>EPSRC<br>UTE<br>NATIONAL<br>NATURAL SCIEN<br>FOUNDATION OF<br>CHINA NSFC |  |
|-------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| 873<br>UNITED STATES DEPARTMENT OF ENERGY I     | 504<br>UK RESEARCH INNOVATION UK                                                 | 328<br>UNITED STATES<br>DEPARTMENT OF HEAL<br>HUMAN SERVICES | 305<br>NATIONAL INSTITUT<br>OF STANDARDS<br>TECHNOLOGY NIST      |                                                                                                                                      |  |
| 793<br>EUROPEAN COMMISSION                      | 448<br>JAPAN SOCIETY FOR THE<br>PROMOTION OF SCIENCE                             | <b>323</b><br>NATIONAL INSTITUTES (<br>HEALTH NIH USA        | OF 232<br>RUSSIAN FOUNDAT<br>FOR BASIC RESEAT<br>RFBR            | 213<br>EUROPEAN<br>COMMISSION JOI<br>RESEARCH CENT                                                                                   |  |





## FLNP

### **Interactions in Disease Modeling Membranes**



Amyloid aggregates

Neutron scattering allows to study model membranes that replicate pre-clinical conditions of **Alzheimer's disease** 



TEM images of the DMPC (left) and DMPC/Aβ25-35 (right) systems collected at 20°C. The dark bars (100 and 50 nm, respectively) in the lower left corners allow to assess the length scales. Objects in the left-hand panel match the typical vesicular objects with mostly unilamellar walls. The right-hand panel reveals randomly oriented discs also consisting of single layers.

Changes in the membrane self-organization happen during the thermodynamic phase transitions of lipids and are interpreted as the **peptide driven membrane damage**.

O. Ivankov, T.N. Murugova, E.V. Ermakova, T. Kondela, D.R. Badreeva, P. Hrubovčák, D. Soloviov, A. Tsarenko, A. Rogachev, A.I. Kuklin, N. Kučerka, *The Journal of Physical Chemistry Letters (under review)* 



### **Cold moderator implementation**





#### Frank Laboratory of Neutron Physics Лаборатория нейтронной физики им ИМ. Франка

### **Kinetics system for YuMO spectrometer**





Container for the sample to be injected cuvette

Samples holder

Figure 4. Dependences of SANS intensity I(q) on scattering vector q for DNA – C<sub>12</sub>NO/DOPE dispersion as a function of time; prior (red points) and after DCl injection. Full lines show fits using a paracrystal lamellar model.

Inset: An example of the distribution of residuals.

D. Uhríková, J. Teixeira, L. Hubčík, A. Búcsi, T. Kondela, T. Murugova, and O. I. Ivankov, Journal of Physics: Conference Series **848**, 012007 (2017).

Figure 5. Time dependence of the structural parameters: the number of layers (A), the lipid bilayer thickness (B) and the spacing (C).

Kinetics system was developed and manufactured in Commenius University of Bratislava, Slovakia



### Size-exclusion chromatography (SEC)



#### Applications:

- Separation of macromolecules from complex mixtures according to their size, charge, selective non-covalent interaction and other properties.
- Protein and polimers purification.
- Affinity-tagged protein purification.
- Desalting and buffer exchange.
- Identification and quantitation of macromolecules (evaluation of hydrodinamic size of a macromolecule).
- Detects the unknown compounds and purity of mixture.

### Funding:

- RSF Grant (Kucerka N.)
- Department of Spectrometers Complex IBR-2 (Kulikov S., Bodnarchuk V.)
- JINR-Poland Grant (Kuklin A.)







### Implementation of SEC on YuMO spectrometer Apoferritin protein







D. I. Svergun (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. *Biophys J.* 2879-2886



#### Frank Laboratory of Neutron Physics Лаборатория нейтронной физики им ИМ. Франка



### Volumetric setup for YuMO spectrometer



Soloviov, D., et al., *Changes in the Area per Lipid Molecule by P–V–T and SANS Investigations.* Macromolecular Symposia, 2014. **335**(1): p. 58-61.



### **Nanopores for Magnetic and Biomedical Applications**



SANS experiments at YuMO

total SANS scattering = regular matrix + polydisperse spheres



$$I(q) = K_{c}S(q)|F_{c}(q)|^{2} + K_{S}|F_{S}(q)|^{2} + I_{d}(q) + I_{i}$$

- pores size & mutual distance
- NPs size distribution & concentration



69-YEAR-OLD MALE (DIAGNOSIS: LYMPHOMA]

#### Applications

- therapeutic agents in tumor treatment and drug delivery
- MRI contrast media (Gadovist)
- magnetic refrigeration due to the large magnetocaloric effect



### Material

Periodic nanoporous silica

- perfect regular structure
- biocompatibility
- thermal stability and durability
- high specific surface



Zeleňáková, A., Hrubovčák P., Kapusta O., Kučerka N., Kuklin A., Ivankov O., Zeleňák V., Size and distribution of the iron oxide nanoparticles in SBA-15 nanoporous silica via SANS study. Scientific Reports, 2019. **9**(1): p. 15852.



# Analysis of the supramolecular organization of rhodopsin in photoreceptor membrane



AFM of outer shape of disc with the rhodopsin protein from rod cell



Distance between rhodopsin centers 38 Å. Rhodopsin molecule size is 35 Å.

14

Photoreceptor membrane model (fragment)



### **Anomalous swelling effect**



 $T_m$  – Main phase transition temperature  $T^*$  – Spinoidal point

 $(T_m - T^*)/T_m \simeq 10^{-2}$ 

Anomalous swelling effect is not coupled to the formation of a ripple phase and occur at the spinoidal point  $T^*$ , which is close, but do not coincide with the main phase transition temperature  $T_m$ 



A Kuklin, D Zabelskii, I Gordeliy, J Teixeira, A Brûlet, V Chupin, Vadim Cherezov, Valentin Gordeliy. On the Origin of the Anomalous Behavior of Lipid Membrane Properties in the Vicinity of the Chain-Melting Phase Transition. Sci Rep 10, 5749 (2020).





### Anomalous swelling effect Conclusions



Predicted changes in the intermembrane distance induced by variations in the decay length ( $\lambda$ ), a Hamaker constant (H), short range repulsion preexponential factor ( $P_0$ ) and bending rigidity ( $K_c$ ) plotted as solid, dashed, dotted and dash-dotted lines respectively Balance of forces:  $P_{srr} + P_{und} = P_{VdW}$ 

$$P_{srr} = P_0 e^{-d_w/\lambda} \qquad P_{und} = \frac{3\pi^2 (kT)^2}{128K_c d_w^3}$$
$$P_{VdW} = \frac{H}{6\pi} \left( \frac{1}{d_w^3} - \frac{2}{(d_w + d_b)^3} + \frac{1}{(d_w + 2d_b)^3} \right)$$

Our calculations show that, despite the fact that the bending rigidity depends strongly on the membrane thickness, the reduction of the membrane thickness <u>cannot completely account</u> for the change of the membrane bending elasticity.

Thus, critical density fluctuations lead to a <u>more disordered</u> lipid bilayer and therefore to the reduction of the bending rigidity to its softening by a factor of 1.5 as it is observed in the experiment.

A mere 6% increase in the value of  $\lambda$  can ensure that the theoretical estimate matches the measured increase in the intermembrane distance.





### New adjustable collimator for the YuMO spectrometer

Spectrometer upgrade:

- adjustable collimator
- direct beam detector
- scattering detectors
- reconstruction of the collimating base

Photographs of the new adjustable collimator and the goniometrical part.







## FLNP

### Sample preparation room

Responsible: T. Murugova







Frank Laboratory of Neutron Physics Лаборатория нейтронной физики им ИМ. Франка



### Acknowledgments

YuMO group Informational technologies group: User policy group FLNP Directorate Department of Neutron Investigations of Condensed Matter Department of Spectrometers Complex IBR-2

JINR-Romania grants and projects (special thanks for M.Balasoiu) JINR-Slovak Republic grants and projects JINR-Poland grants JINR-Czech Republic grants





# Thank you for your attention!





### 25 samples holder with connected Lauda liquid thermostat



