Status of η_c reconstruction at SPD

Nikita Trunov

DLNP, JINR trunov@jinr.ru

02.06.2021, SPD meeting

→ < ∃→

A brief reminder

- p p collision with $\sqrt{s} = 27 GeV$
- $\sigma_{\eta_c} = 400 \text{nb}$
- $B_{\eta_c \to p\bar{p}} = 1.45 * 10^{-3}$
- $\sigma_{MB} = 40 \text{mb}$
- ≈ 6 orders of magnitude difference
- We have to reduce the background by imposing some cut(s)

э

A brief reminder

However it didn't work

- I forgot to take into account a cut on the polar angle of the outgoing particle (will be discussed a little later)
- How did The LHCb conduct their analysis?

э

(日)

The LHCb Detector at the LHC

- $(\sigma_{J/\psi}^{prompt})_{13 \, TeV}^{6.5 < p_T < 14.0 \, GeV, 2.0 < y < 4.5} = 0.749 \pm 0.005 \pm 0.028 \pm 0.037 \mu b$
- 2.0 < y < 4.5
- $6.5 < p_T < 14 \text{GeV}/c$ for $p \bar{p}$ pair
- *p_T* > 2*GeV*/*c* for each particle
- Maximum E_T in HCal & $n_{SPD} < 450 L0$ trigger
- $10 < \theta < 400 mrad$ for charged particles

- 4 同 ト 4 三 ト - - 三 ト - -

The LHCb outcomes

arXiv:1911.03326v2 [hep-ex] 5 Mar 2020

$p_{\rm T}$ range [GeV]	$N_{J/\psi}^{\text{prompt}}$	$N^b_{J/\psi}$	$\frac{N_{\eta_c}}{N_{J/\psi}^{\text{prompt}}}$	$\frac{N_{\eta_0}^a}{N_{J/\psi}^b}$
6.5 - 8.0	21600 ± 1800	5080 ± 140	0.98 ± 0.22	0.26 ± 0.04
8.0 - 10.0	26500 ± 1700	7930 ± 170	1.12 ± 0.18	0.40 ± 0.03
10.0 - 12.0	15100 ± 1100	5240 ± 130	1.24 ± 0.19	0.30 ± 0.04
12.0 - 14.0	5700 ± 700	2830 ± 100	2.24 ± 0.44	0.35 ± 0.05
6.5 - 14.0	69000 ± 2800	21040 ± 270	1.18 ± 0.10	0.33 ± 0.02

æ

all cuts

The simulated signal and background as well as the signal and background extracted from the LHCb data, respectively

$$\frac{N_{sig}^{MC}}{V_{sig}^{LHCb}} = \frac{239579}{69000} \approx 3.5 \quad \frac{N_{back}^{MC}}{N_{back}^{LHCb}} = \frac{5.7 \times 10^6}{1.7 \times 10^6} \approx 3.4$$

- As a consequence, it can be concluded that the signal-to-background ratio is consistent with the LHCb result
- And what about SPD?

Returning to the SPD case

• $\Rightarrow p_T(p\bar{p}) > 2 \text{ GeV/c or}$ $p_T(p\bar{p}) > 3 \text{ GeV/c}$ • As well as $|cos\theta| < 0.9$

• □ ▶ • < </p>
• □ ▶ • < </p>

Imposing these cuts

	N_{back}/N_{sig}
$p_T > 2 \ GeV/c$	$5.7 * 10^4$
$p_T > 3 \text{ GeV}/c$	$1.32 * 10^4$
$ \cos \theta < 0.9$	$1.1 * 10^5$
$p_T > 2 \text{ GeV/c} \& \cos \theta < 0.9$	$2.9 * 10^4$
$p_T > 3 \text{ GeV/c \& } \cos \theta < 0.9$	$8.8 * 10^3$

Nevertheless the background is still high Any ideas?

イロト イポト イヨト イヨト

э

- Better, but the background is still large
- ② Perhaps, we should impose some 2D-cuts on p_T of p and \bar{p}
- Anyway, the analysis should be continued

Backup

