Progress in $\overline{\Lambda}$ reconstruction

Raimbek Akhat

03.06.2021

Motivation

Hyperons can provide essential signatures of the hot and compressed baryonic matter

At NICA it is planned to study hyperons at MPD and BM@N setup

In heavy ion collisions measurement of strange hyperons polarization allows to research properties of the QCD medium (vorticity, hydrodynamic helicity)

Motivation

Predicted¹ and observed² global polarization signals rise as the collision energy is reduced NICA energy range will provide ne

NICA energy range will provide new insight

- Large $\Lambda(\overline{\Lambda})$ splitting observed at low energies (RHIC)
- Updated result from HADES follows the increasing trend³
- 1. O. Rogachevsky, A. Sorin, O. Teryaev, Phys.Rev. C 82, 054910 (2010)
- 2. J. Adam et al. (STAR Collaboration), Phys. Rev. C 98, 014910 (2018)

3. F. Kornas for the HADES Collaboration, SQM 2019, Bari, Italy (11.06.19)

Data

- 1400000 MB events (studied centrality intervals 0-10%, 10-20%, 20-50%, 50-100%)
- PHSD for generation
- Au Au collision at 7.7 GeV

$\Lambda - \Lambda$ hyperon polarization

Polarization can be measured through weak deca

 $\Lambda \rightarrow p + \pi^{-}$ $\bar{\Lambda} \rightarrow \bar{p} + \pi^+$

 $\frac{dN}{d\cos\theta} = 1 + \alpha_{\Lambda} P_{\Lambda} \cos\theta^*$ decay asymmetry parameter

Global polarization can be measured as:

$$P_{\Lambda} = \frac{8}{\pi \alpha_{\Lambda}} \frac{1}{R_{EP}} \langle \sin(\Psi_{EP} - \varphi^*) \rangle$$

$\overline{\Lambda} - \Lambda$ hyperon reconstruction technique

PV – primary vertex
V₀ – vertex of hyperon decay
dca – distance of the closest approach
path – decay length

parameters for selection:

$$_{1} = ln \frac{dca_{\pi}dca_{p}}{dca_{\Lambda}^{2} + dca_{V_{0}}^{2}}$$

All the parameters can also be normalized to their respective errors giving a set of χ^2

 ω

$$\varpi_2 = ln \frac{\sqrt{\chi_\pi^2 \chi_p^2}}{\chi_\Lambda^2 + \chi_{V_0}^2}$$

takes into account correlations of standard selection criteria taken in χ^2

Selection cuts for inv.mass Λ , $\overline{\Lambda}$

$\overline{\Lambda}$ hyperon

Centrality	Selection cut ϖ_2 at max.sign
0-5%	1.8
5-10%	1.6
10-40%	1.4
40-100%	0.8
0-100%	1.4

Λ hyperons Centrality Selection cut ϖ_2 at max.sign

0-5%	2.4
5-10%	2.2
10-40%	1.8
40-100%	1.2
0-100%	2.0

Invariant masses Λ , $\overline{\Lambda}$

.DCA and track-separation cuts

Invariant mass Λ for different centralities

Invariant mass $\overline{\Lambda}$ for different centralities

Number of $\overline{\Lambda} - \Lambda$ per event for different centralities

Number of $\overline{\Lambda}$ per event for different centralities

MC \wedge hyperons $\overline{\Lambda} - \Lambda$ hyperons yield

Centrality	Number	Number per events
0-5%	3 338 380	56.32
5-10%	2 851 102	45.82
10-40%	8 845 462	24.03
40-100%	2 306 016	3.121

$PID \land hyperons$

Centrality	Number	Number with selection cut ω_2	Number per events
0-5%	62 107 649	3 273 203	55.2
5-10%	79 497 683	2 550 396	40.98
10-40%	43 758 171	6 421 057	17.4
40-100%	64 718 671	1 065 843	1.4
		-	

Reconstructed Λ hyperons

Centrality	Number	Number per events
0-5%	191 649	3.23
5-10%	162 863	2.617
10-40%	491 715	1.33
40-100%	109 312	0.14

Centrality	Number	Number per events
0-5%	57 334	0.96
5-10%	46 308	0.74
10-40%	123 330	0.33
40-100%	19 935	0.269

MC $\overline{\Lambda}$ hyperons

PID $\overline{\Lambda}$ hyperons

Centrality	Number	Number with selection cut ω_2	Number per events
0-5%	1 367 159	108 132	1.82
5-10%	8 823 384	81 623	1.31
10-40%	1 454 977	172 069	0.46
40-100%	87 294	26 507	0.035

13

Reconstructed $\overline{\Lambda}$ hyperons

Centrality	Number	Number per events
0-5%	5861	0.098
5-10%	5000	0.08
10-40%	13698	0.037
40-100%	2132	0.0028

$\overline{\Lambda}$ hyperon yield vs p_T

$\overline{\Lambda}$ hyperon yield vs rapidity

Factors affecting $\overline{\Lambda}$ reconstruction efficiency.

0-5 % centrality		
Factor	Efficiency, %	
Branching ratio: $\overline{\Lambda} \rightarrow \overline{p} + \pi^+$	61.9	
$ar{p}$ and π^+ at $ \eta $ <1.3	35.6	
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.05 GeV/c	33.2	
\bar{p} and π^+ at $ \eta $ <1.3 and p_T >0.1 GeV/c	24.4	
\bar{p} and π^+ at $ \eta $ <1.3 and p_T >0.2 GeV/c	7.3	
Reconstructed \bar{p} and π^+ at $ \eta < 1.3$	22.7	
Maximum significance	10.4	

5-10 % centrality

Factor	Efficiency, %
Branching ratio: $\overline{\Lambda} \rightarrow \overline{p} + \pi^+$	62
$ar{p}$ and π^+ at $ \eta $ <1.3	35.7
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.05 GeV/c	33.2
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.1 GeV/c	24.7
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.2 GeV/c	7.3
Reconstructed \bar{p} and π^+ at $ \eta < 1.3$	22.9
Maximum significance	11

10-40 % centrality

Factor	Efficiency, %
Branching ratio: $\overline{\Lambda} \rightarrow \overline{p} + \pi^+$	62
\bar{p} and π^+ at $ \eta $ <1.3	35.8
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.05 GeV/c	33.3
\bar{p} and π^+ at $ \eta $ <1.3 and p_T >0.1 GeV/c	24.4
\bar{p} and π^+ at $ \eta $ <1.3 and p_T >0.2 GeV/c	7.1
Reconstructed \bar{p} and π^+ at $ \eta $ <1.3	23.1
Maximum significance	11.4

40-100 % centrality

Factor	Efficiency, %
Branching ratio: $\overline{\Lambda} \rightarrow \overline{p} + \pi^+$	62.2
\bar{p} and π^+ at $ \eta $ <1.3	36.3
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.05 GeV/c	33.6
\bar{p} and π^+ at $ \eta $ <1.3 and p_T >0.1 GeV/c	23.3
\bar{p} and π^+ at $ \eta $ <1.3 and p_T >0.2 GeV/c	5.8
Reconstructed \bar{p} and π^+ at $ \eta $ < 1.3	22.2
Maximum significance	10.9

Factors affecting $\overline{\Lambda}$ reconstruction efficiency.

0-100 % centrality

Factor	Efficiency, %
Branching ratio: $\overline{\Lambda} \rightarrow \overline{p} + \pi^+$	62
$ar{p}$ and π^+ at $ \eta $ <1.3	35.8
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.05 GeV/c	33.3
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.1 GeV/c	24.3
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.2 GeV/c	7
Reconstructed \bar{p} and π^+ at $ \eta $ <1.3	22.9
Maximum significance	11.2

Reconstruction efficiency at maximum significance

MPD PID for the analysis

ToF m², GeV²

1.5

ToF m² as a function of momentum

Mass2 pikapr

1716286e+07 0.504 0.01639

> 0.3585 0.06742

 10^{6}

10⁵

10⁴

$$\begin{split} \Lambda &\to p + \pi^- \\ \bar{\Lambda} &\to \bar{p} + \pi^+ \end{split}$$

dE/dx as a function of momentum

Comparison with experimental data

0-7% centrality

Centrality determination (Multiplicity in TPC)

MC-Glauber based centrality framework⁵ •

Cuts: $p_{\rm T} > 0.15 \, {\rm GeV/c}$ |η | < 0.5 $N_{hits} > 16$ |DCA | < 0.5 cm

w/o DCA cut is used for analysis

5. P. Parfenov et al, NRNU MEPhl for the MPD collaboration (https://github.com/FlowNICA/CentralityFrame work)

Invariant masses $\overline{\Lambda}$

Number of $\overline{\Lambda} - \Lambda$ per event for different centralities (new determination of centrality)

Number of $\overline{\Lambda}$ per event for different centralities

$\overline{\Lambda}$ hyperon yield vs rapidity

Phase space for $\overline{\Lambda}$ hyperon (selected true)

Reconstruction efficiency for $\overline{\Lambda}$ hyperon

Conclusion

- $\overline{\Lambda}$ and Λ reconstruction efficiency was studied in terms of impact parameter
- Implemented MC-Glauber framework for centrality determination
- Differential analysis will require larger statistics
- (ongoing) $\overline{\Lambda}\,$ reconstruction efficiency in terms of new definition of centrality

Thank you for your attention