Comparison of the main distributions of the vHLLE+UrQMD and UrQMD models

Models and Statistics

UrQMD

vHLLE+UrQMD

- S. A. Bass, *et. al.* Prog. Part. Nucl. Phys. **41** (1998) 225
- M. Bleicher et. al. J. Phys. G 25, (1999) 1859
- Version 3.4, cascade mode
- Available statistics:

10M fully reconstructed min. bias AuAu @ 11.5 GeV (local production)

- Iurii Karpenko, Comput. Phys. Commun. 185 (2014), 3016
- Parameters: from Iu. A. Karpenko, P. Huovinen, H. Petersen, M. Bleicher, Phys. Rev. C 91 (2015) no.6, 064901
- Initial conditions: UrQMD model
- <u>QGP phase:</u> 3D viscous hydro (vHLLE) with crossover (XPT) or 1-st phase transition (1PT) EoS
- Hadronic phase: UrQMD model
- Available statistics:

PWG3 official production – 15M fully reconstructed min. bias AuAu @ 11.5 GeV for each EoS [link]

Centrality classes selection

Centrality	b _{min} , fm	b _{max} , fm
0-5%	0	2.91
5-10%	2.91	4.18
10-20%	4.18	6.01
20-30%	6.01	7.37
30-40%	7.37	8.52
40-50%	8.52	9.57
50-60%	9.57	10.55
60-70%	10.55	11.46
70-80%	11.46	12.31

Centrality was defined based on impact parameter: $b_{min} < b < b_{max}$

Distribution of the multiplicity vs impact parameter

Strange "tail" at small N_{ch} in vHLLE+UrQMD model

vHLLE+UrQMD XPT, Au+Au, 20-30%, h[±]

5

Distribution of the multiplicity vs impact parameter

Cut (N_{ch}>50 || b>11 fm) was applied

Distribution of the multiplicity of charged particles with (Nch>50 || b>11 fm) cut

Distribution of the energy deposited in FHCal of charged particles with (Nch>50 || b>11 fm) cut

vHLLE+UrQMD cuts spectators in forward/backward pseudorapidity regions

Distribution of the pseudorapidity of of charged particles with (Nch>50 || b>11 fm) cut

9

Distribution of the transverse momentum of charged particles with (Nch>50 || b>11 fm) cut

Resolution with (Nch>50 || b>11 fm) cut

Centrality, %

Effect of the (N_{ch}>50 || b>11 fm) cut on resolution

With cut

"Tail" at small N_{ch} affects resolution correction factor

Elliptic flow at NICA energies: Models vs Data comparison

Iu.A. Karpenko, P. Huovinen, H. Petersen, M. Bleicher, Phys.Rev. C91 (2015) no.6, 064901

Elliptic flow at NICA energies: Models vs Data comparison

Pure String/Hadronic Cascade models give smaller v₂ signal compared to STAR data for Au+Au $\sqrt{s_{NN}}$ =7.7 GeV and above

Elliptic flow: protons vs. antiprotons

• Both vHLLE+UrQMD and UrQMD predict $v_2(p) < v_2(\bar{p})$ but experimental data shows $v_2(p) > v_2(\bar{p})$

15

Thank you for your attention!

Backup

Without (N_{ch}>75 || b>11 fm) cut

 \mathbf{N}_{ch}

Distribution of the multiplicity of charged particles for different centrality classes

19

Distribution of the energy deposited in FHCal of charged particles

Distribution of the pseudorapidity of charged particles for different centrality classes

Resolution without N_{ch} cut

Centrality, %

Elliptic flow at NICA energies: Models vs Data comparison

Pure String/Hadronic Cascade models give similar v_2 signal compared to STAR data for Au+Au $\sqrt{s_{NN}}$ =4.5 GeV

Distribution of the transverse momentum of charged particles for different centrality classes

Distribution of the pseudorapidity of charged particles for different centrality classes

Distribution of the transverse momentum of pions for different centrality classes

Distribution of the pseudorapidity of pions for different centrality classes

