

Рис. 1: Амплитуда кластера в зависимости от номера события в ране.

Рис. 2: Номер трипующей камеры в зависимости от номера события при энергии пучка T=4 GeV. Красный - трипы по камерам в данном анализе. Синий (при chamber=7) - существующая метка трипа в BmnEventHeader::GetTripWord() нтупла. Доля триповых событий по камерам для разных мишеней: C: 1.3, 0.48, 6.9, 1.3, 2.1, 0.48, 2.2%; Al: 0, 0, 12.0, 0, 2.8, 0, 0%; Cu: 3.073, 0, 13.73, 0, 9.676, 0, 1.0%; Pb: 0, 0, 36.15, 0, 0, 0, 0%.

Рис. 3: T=4.5 GeV. Доля триповых событий по камерам для разных мишеней: С: 2.916, 2.933, 7.539, 1.659, 1.659, 2.814, 1.659%; Al: 4.738, 0, 6.0, 0, 0, 0.933%; Cu: 11.14, 0.3836, 20.4, 0, 0, 0, 0%; Pb: 9.004, 1.067, 28.96, 0, 0, 0, 0%. Нижний график: Раны в A-dst, исключенные из анализа (построен по GEM HV данным в tango).

Рис. 4: Pb T=4.5 GeV. Синий - хорошие события; красный - события с трипами третьей камеры. Красные графики приведены к такому-же количеству событий, что и синие. От треков из pv остаётся ровно 50%.

В трековых нтуплах (по 1408) CbmVertex::trkID[i] значения повторяются и нет "0".

Рис. 5: Сравнение спектров в событиях без трипов (синий) и с трипами 0-ой камеры (красный). Спектр с трипами отнормирован на то-же число событий, что и без трипов. Через "/" показаны доля событий с одиночными трипами и доля событий без трипов в данном облучении. 26-may-2019 analysis note cuts: T0=1, BC2=1, VETO=0, Nstrip<440, 0.3 < p0 < 1.8, 0.5 , nhits<math>0>3, nhits1>3, disth<1.0, path>2.5

Рис. 6: Трипы 2 камеры. Отключение второй камеры в 2-3 раза снижает количество Л кандидатов.

Рис. 7: Трипы 4 камеры (станция из двух маленьких камер).

Вывод: исключить сбросы, в которых отключалась GEM-2 или больше одной камеры одновременно.

Мои границы трипов uRun6TripsOrig.dat были привязаны к номерам событий и были несколько шире реальных трипов (зона безопасности), поэтому систематически цепляли край соседних сбросов. В uRun6Trips.dat укорочены диапазоны, где в крайних сбросах трипы составляли менее 10% событий. В uRun6TripsSpBounded.dat - диапазоны трипов даны в номерах сбросов, также даны номера событий, точно соответствующие границам сбросов.

Рис. 8: Напряжение на камерах GEM по Tango.

 $bmn_run1408_recodata.root$

 $\begin{array}{l} & \operatorname{BmnEventHeader} *\operatorname{ehead} = (\operatorname{BmnEventHeader} *)\operatorname{BmnH-} > \operatorname{UncheckedAt}(0); \\ & \operatorname{TTimeStamp time} = \operatorname{ehead-} > \operatorname{GetEventTime}(); \\ & \operatorname{Date}/\operatorname{Time} = \operatorname{Sun}, \ 08 \ \operatorname{Aug} \ 2021 \ 11:55:46 \ +0000 \ (\mathrm{GMT}) \ + \ 77943000 \ \mathrm{nsec} \\ & \operatorname{Date}/\operatorname{Time} = \operatorname{Sun}, \ 08 \ \operatorname{Aug} \ 2021 \ 11:55:46 \ +0000 \ (\mathrm{GMT}) \ + \ 77943000 \ \mathrm{nsec} \\ & \operatorname{Date}/\operatorname{Time} = \operatorname{Sun}, \ 08 \ \operatorname{Aug} \ 2021 \ 11:55:46 \ +0000 \ (\mathrm{GMT}) \ + \ 77943000 \ \mathrm{nsec} \\ & \operatorname{Date}/\operatorname{Time} = \operatorname{Sun}, \ 08 \ \operatorname{Aug} \ 2021 \ 11:55:46 \ +0000 \ (\mathrm{GMT}) \ + \ 77943000 \ \mathrm{nsec} \\ & \operatorname{Date}/\operatorname{Time} = \operatorname{Sun}, \ 08 \ \operatorname{Aug} \ 2021 \ 11:55:46 \ +0000 \ (\mathrm{GMT}) \ + \ 77943000 \ \mathrm{nsec} \\ & \operatorname{Date}/\operatorname{Time} = \operatorname{Sun}, \ 08 \ \operatorname{Aug} \ 2021 \ 11:55:46 \ +0000 \ (\mathrm{GMT}) \ + \ 77943000 \ \mathrm{nsec} \\ & \operatorname{Date}/\operatorname{Time} = \operatorname{Sun}, \ 08 \ \mathrm{Aug} \ 2021 \ 11:55:46 \ +0000 \ (\mathrm{GMT}) \ + \ 77943000 \ \mathrm{nsec} \\ & \operatorname{Mate} \ - \ 3000 \ \mathrm{Sun} \ + \ 10000 \ \mathrm{GMT} \ + \ 77943000 \ \mathrm{nsec} \\ & \operatorname{Mate} \ - \ 1000 \ \mathrm{GMT} \ + \ 77943000 \ \mathrm{nsec} \\ & \operatorname{Mate} \ - \ 10000 \ \mathrm{GMT} \ + \ 77943000 \ \mathrm{nsec} \ \mathrm{Mate} \ \mathrm{Sun} \$

Рис. 9: Количество событий в сбросе. Синяя гистограмма - из uni_db с пьедесталами (run_beam_info.C), красная - из data без пьедесталов. В 60% ранов сбросы синхронизованы точно. После последнего сброса к гистограммам добаблено 9 пустых бинов для визуального разделения ранов.

Рис. 10: Полный пучок за сброс (BeamSpillStructure::beam_all). Во всех гистограмма установлен постоянный максимум 150k/spill.

Рис. 11: Полный пучок за сброс (BeamSpillStructure::beam_all). $Run_0=1408 N=40k$; 1418 20; 1504 60; 1508 40; 1544 20; 1561 40; 1579 60; 1631 80; 1800 100; 1841 115k.

run_0	$-dU_0$	$-dU_1$	$-dU_2$	$-dU_3$	$-dU_4$	$-dU_5$	$-dU_6$	runs	
1408	-1	-11	4	4	-16	1	1	С	1408 1409 1411 12 13 15 18 1420 1422
1431	-110	-121	-105	-100	-121	-105	-105		-
1443	-10	-21	-5	0	-21	-5	-5	Al	$1446\ 1451\ 1461\ 1462$
1463	-10	-21	87	0	-21	-5	-5		-
1464	-10	-21	3	0	-2	1 -5	-5	Al	$1464\ 1468\ 1470\ 1471\ 1472\ 1473\ 1474$
								Cu	$1477\ 1479\ 1480\ 94\ 95\ 97\ 1498\ 1500$
1502	0	-10	3	4	-5	1	0	Cu	$1503 \ 1504 \ 1505 \ 1506 \ 1508$
								\mathbf{Pb}	$1518 \ 1520 \ 1523 \ 1525 \ 1526 \ 1527)$
1534	0	-11	3	3	1	1	0	\mathbf{C}	$1538\ 39\ 40\ 41\ 42\ 43\ 44\ 45\ 1546\ 1547$
								Al	$1549\ 1551\ 1552\ 1555\ 1556\ 1557\ 1559\ 1560$
								Cu	$1561 \ 63 \ 67 \ 1569 \ 1570 \ 71 \ 72 \ 1573 \ 1574$
								Al	$1579\ 1580\ 1581\ 1583$
								Cu	$1586\ 1587\ 1588\ 1589\ 1591\ 1592$
								\mathbf{C}	$1594\ 1596\ 1599\ 1600$
							4.5 Ge	V	
1601	-26	-24	-21	-18	-8	-30	-23		-
1602	-34	-45	-29	-35	-35	-32	-34		-
1619	-1	-11	2	1	-2	0	0		-
1622	-1	-11	2	1	-2	0	1	\mathbf{C}	1627 1630 1631 1636 1637 1641 1642
1643	78	-10	3	32	-1	0	30	\mathbf{C}	1643
1645	-1	-4	3	1	-1	0	0	\mathbf{C}	$\frac{1645}{1646}$ 1647
								Al	$1649\ 1650\ 1651\ 1652\ 1657$
1664	35	38	37	37	35	36	36	Al	1664 1666 1670
1671	-1782	-62	-62	-63	-66	-64	-64		-
1672	-325	-332	-322	-318	-325	-329	-324		-
1673	-175	-182	-172	-168	-175	-179	-174		-
1676	-175	-182	-173	-176	-180	-179	-174		-
1677	-35	-32	-32	-33	-35	-36	-34		-
1678	-325	-332	-322	-318	-325	-326	-324		-
1682	35	38	28	36	35	35	38		-
1683	36	38	38	36	35	36	38	Cu	$1683 \ 84 \ 86 \ 87 \ 94 \ 96 \ 97 \ 98 \ 1699 \ 1700$
1702	-2	-6	2	3	-1	0	-1		-
1705	37	35	41	37	38	39	38	\mathbf{Pb}	$1703 \ 04 \ 05 \ 06 \ 07 \ 08 \ 09 \ 10 \ 11 \ 1712$
								C_2H_4	1715
1757	35	36	36	36	34	36	36	Al	1757 1758 59 60 1762 64 66 1767
1770	-326	-334	-326	-319	-328	-330	-324		-
1792	0	0	0	1	0	0	0	Cu	$1795 \ 96 \ 97 \ 1798 \ 1800 \ 1801 \ 02 \ 04 \ 1811$
1812	-326	-334	-294	-319	-327	-331	-325		-
1818	0	0	0	0	0	0	0	\mathbf{Pb}	1818 1819 1820 1825 1826 1827
								C_2H_4	1828 1829 1830 1831 1832 1833
								\mathbf{C}	1835
1837	0	0	-37	0	0	0	0	\mathbf{C}	1837 39 41 42 43 44 45 46 48 49 1850
								Al	1853 54 55 58 59 60 61 62 63 64 65 1866
								Cu	1869 70 72 73 75 76 77 78 79 80 81 1882

Таблица 1: Отклонение GEM HV об базового значения в run=1818: -U=(3580, 3682, 3567, 3546, 3600, 3659, 3567) V. run_0 - первый ран при данных напряжениях. Зачеркнутые номера ранов присутствуют в Λ -dst, но исключены из дальнейшего анализа.