Simulation of the MPD trigger

V. Riabov for the MPD

Joint effort of many groups:

- ✓ PHQMD event generator: V. Kireyeu
- ✓ Centrality determination: P. Parfenov, D. Idrisov, V. Luong, A. Taranenko
- ✓ FFD operation and simulation: S. Lobastov, V. Yurevich
- ✓ FHCAL operation and simulation: M. Golubeva, A. Ivashkin

Trigger detectors at forward rapidity

- FFD (Fast Forward Detector) dedicated trigger detector:
- ✓ fast event triggering
- \checkmark T₀ for time measurements in the TOF and ECAL
- FHCAL (Forward Hadron Calorimeter) –
 detector for event centrality and reaction plane
 measurements with potential for event triggering

- MPD challenges at NICA energies:
 - \checkmark low multiplicity of particles produced in heavy-ion collisions
 - \checkmark particles are not ultra-relativistic (even the spectator protons)

FFD (see TDR for details)

- FFD (Fast Forward Detector) dedicated trigger detector:
 - ✓ fast event triggering
 - \checkmark T₀ for time measurements in the TOF and ECAL

Experiment	Detector	Active area* (cm ²)	Number of channels*	Distance from IP (cm)	η -interval	Photodetector	Time resolution** σ _t (ps)
MPD/NICA	FFD Cherenkov	625	80	140	2.7 - 3.9	Photonis MCP-PMTs XP85012/A1	44

• Detects Cerenkov light from decay photons (mostly from $\pi^0 \rightarrow \gamma \gamma$ decays) and fast hadrons

FHCAL (see TDR for details)

- FHCAL (Forward Hadron Calorimeter) event centrality and reaction plane measurements:
 - \checkmark has a potential for event triggering
 - \checkmark T₀ measurements are not possible

- Detects projectile nuclei fragments (spectators) and forward going particles produced close to the beam, $2 < |\eta| < 5$:
 - ✓ large transverse area, $1x1 m^2$
 - ✓ energy resolution: $\sigma(E)/E < 60\% / \sqrt{E(GeV)}$
 - ✓ Time resolution for mip ~ 1 ns
 - $\checkmark\,$ good uniformity of the detector response
 - \checkmark high transverse segmentation

Simulation chain

- Event generators: DCM-QGSM-SMM* (GSI version) and PHQMD:
 - ✓ 150 k events, realistic z-vertex with $\sigma \sim 24$ cm, minbias b = 0-16 fm
 - ✓ simulation of hadron production at midrapidity → event multiplicity/centrality
 - ✓ simulation of hadron and fragment production at forward rapidity → acceptance of FFD & FHCAL
- All detectors are simulated in the framework of the MpdRoot (Geant-4)
- FFD simulation :
 - \checkmark modified version of the code originally committed by S. Lobastov (about a month ago)
 - ✓ particle transport → showers in Pb converter → Cerenkov light generation in the quartz radiator
 - ✓ generation of photoelectrons in photocathode taking into account its quantum efficiency, loss of photons due to reflection and absorption (~ 50%), times of photoelectrons are simulated as arrival times of Cerenkov photons to the photocathode surface
 - ✓ channel is fired once number of collected photoelectrons exceeds a limit of \sim 1/3 mip
 - ✓ photoelectrons sorted by time are integrated to exceed the same threshold → time of the channel
 - \checkmark times are additionally smeared by 40 ps to account for the effects of electronics, cabling etc.
- FHCAL simulation :
 - \checkmark modified version of the original code committed Marina long ago
 - ✓ particle transport → showers in Pb tiles → simulation of light in scintillator tiles (dE/dx → photons)
 → simulation of total signal, times of photoelectrons are simulated taking into account the photon formation times and photon transport to the last scintillator tile in the module
 - \checkmark channel is fired once total signal in the module exceeds a limit of ~1 mip
 - ✓ photoelectrons sorted by time are integrated to exceed the same threshold → time of the channel
 - \checkmark times are additionally smeared by ~ 1 ns to match the measured resolution

* Statistical Multifragmentation Model (SMM)

Event generators and centrality

- Centrality determination following report by P. Parfenov at Physics Forum from April, 15:
 ✓ BUT used looser track selections in the TPC: nHits > 10, |η| < 1, p_T > 50 MeV/c, |DCA| < 5 cm
- Even with looser track selection cuts ~ 6% of inelastic Auau@11 events do not have reconstructed tracks in the TPC → no centrality categorization (dropped)
- Wider rapidity selection ($|\eta| < 1.0$) diminishes z-vertex dependence of centrality
- Number of $\langle N_{tracks}^{TPC} \rangle$ vs. true z-vertex (events after reconstructed z-vertex cut of 50 cm):

- Similar flatness of the distributions is observed in different multiplicity/centrality intervals
- The same distributions are depleted by up to 15-20% at z~0 with a narrower cut of $|\eta| < 0.5$

Multiplicity and centrality

• Multiplicity distributions and centrality classes after reconstructed z-vertex cut of 50 cm and assuming 100%-efficient event selection (100% trigger efficiency)

Centrality class	N_{tracks}^{TPC}		
90-100%	1-4		
80-90%	5-12		
70-80%	12-24		
60-70%	24-44		
50-60%	44-73		
40-50%	73-114		
30-40%	114-170		
20-30%	170-245		
10-20%	245-349		
0-10%	349-587		

Centrality class	N ^{TPC} tracks		
90-100%	1-3		
80-90%	4-10		
70-80%	10-21		
60-70%	21-37		
50-60%	37-61		
40-50%	61-93		
30-40%	93-137		
20-30%	137-195		
10-20%	195-273		
0-10%	273-445		

FFD

FFD, number of fired channels

• FFD-E (FFD-W) consists of 20 modules; each module has 4 read-out channels

• Detector occupancy shows strong collision energy and centrality dependence

V. Riabov, NICA-MPD Seminar, 17.06.2021

FFD with DCM-QGSM-SMM

• DCM-QGSM-SMM, AuAu@11, trigger efficiency vs. impact parameter and centrality

• DCM-QGSM-SMM, AuAu@5, trigger efficiency vs. impact parameter and centrality

Efficiency is ~ 100% in central and semicentral collisions and rapidly drops towards peripheral collisions → " at least one-channel per side" is a possible and preferred option for FFD triggering V. Riabov, NICA-MPD Seminar, 17.06.2021

FFD, model dependence

• AuAu@11, efficiency vs. centrality

- Trigger condition: ≥ 1 fired channel per side
- Efficiency shows model dependence, especially at lower collision energy
- DCM-QGSM-SMM predicts lower FFD efficiency at lower collision energy in peripheral collisions, while PHQMD predicts higher efficiency

FFD efficiency vs. true z-vertex

- FFD trigger efficiency does not show z-vertex dependence (at least with >=1 requirement)
- FFD trigger efficiency is ~ 0.9 in all systems consistently predicted by two event generators

FFD, offline T₀ resolution

AuAu@5, T_0 resolution vs. centrality

- $T_0 = (T_{FFDE} + T_{FFDW}) / 2 L/c$
- AuAu@11, T₀ resolution vs. centrality

- With TOF resolution of 80-100 ps, the T_0 resolution is required to be ~ 50 ps
- The condition is satisfied in AuAu@11 at all centralities
- The condition is satisfied only in central AuAu@5; T_0 resolution becomes comparable to TOF resolution at centralities > 50-70%
- The problem is not in the intrinsic time resolution of the FFD, but in the time spread of arriving particles \rightarrow study of the TOF performance for T₀ measurements is needed!

FFD, offline T₀ bias

- AuAu@11, T₀ resolution vs. centrality AuAu@5, T_0 resolution vs. centrality T₀ (ns) T_o (ns) **DCM-QGSM-SMM** DCM-QGSM-SMM 0.5 0.5 T₀ (ns) PHQMD PHOMD 0.5 0.2
- Appearance of the tail in T_0 distribution at low multiplicities \rightarrow non Gaussian distributions
- Mean of T_0 distribution shifts from zero at lower multiplicities (even in most central AuAu@5)
- The shift/bias is large $\rightarrow \underline{a \text{ strong effect } (2-4 \sigma)}$
- The shift can be corrected by tuning the TOF-reconstructed proton masses to PDG value as a function of centrality → <u>additional source of systematic uncertainties</u>

FFD, offline z-vertex resolution

- $Z = (T_{FFDW} T_{FFDE}) / 2 * 30 [cm]$
- AuAu@11, z-resolution vs. centrality

• AuAu@5, z-resolution vs. centrality

- Z-vertex resolution is < 2 cm and < 5 cm in AuAu@11 and AuAu@5, respectively
- No centrality bias for z-vertex is observed

V. Riabov, NICA-MPD Seminar, 17.06.2021

FFD: Summary

- FFD is a dedicated detector for AuAu event selection with superb performance (single channel efficiency of 100% for mip and time resolution of ~ 40 ps)
- Specifics of AuAu collisions in the collider mode at low energies puts some limitation on the trigger performance
- Predictions for FFD performance show model dependence; however basic performance parameters and trends are predicted to be the same
- FFD, trigger efficiency in Au-Au:
 - \checkmark ~ 100% in central and semicentral collisions at all energies
 - ✓ rapidly drops in peripheral collisions; ~ 50% in centrality interval 80-100%
 - ✓ overall efficiency is ~ 90%, no collision energy dependence, no z-vertex dependence
- FFD, T_0 and z-vertex in Au-Au:
 - ✓ offline z-vertex resolution is < 2 cm and < 5 cm in AuAu@11 and AuAu@5, respectively
 - ✓ online z-vertex resolution is < 5 cm (no averaging)
 - ✓ T_0 resolution is < 50 ps in AuAu@11 and in central AuAu@5
 - ✓ T_0 resolution rapidly deteriorates in semi-central and peripheral AuAu@5 → TOF studies???
 - \checkmark T₀ shows strong centrality bias; can be corrected by mass measurements in the TOF but should be considered as a source of systematic uncertainties
 - ✓ T_0 shows tail (non-Gaussian) in low-multiplicity events → lower efficiency and systematic unc.

FHCAL

FHCAL, DCM-QGSM-SMM

• DCM-QGSM-SMM, AuAu@11, trigger efficiency vs. impact parameter and centrality

• DCM-QGSM-SMM, AuAu@5, trigger efficiency vs. impact parameter and centrality

- Efficiency is ~ 100% in central and semicentral collisions and drops towards peripheral ones
- |Option " at least one-module per side" provides the highest efficiency for FHCAL triggering

FHCAL, model dependence

• AuAu@11, efficiency vs. centrality

• AuAu@5, efficiency vs. and centrality

- Trigger option: at least one fired module per side
- Efficiency shows model dependence
- DCM-QGSM-SMM predicts lower FHCAL efficiency at lower collision energy in peripheral collisions; PHQMD predicts no collision energy dependence

FHCAL efficiency vs. true z-vertex

DCM-QGSM-SMM, AuAu@11

PHQMD, AuAu@11

- FHCAL trigger efficiency does not show z-vertex dependence (any selections)
- FHCAL trigger efficiency is ~ 0.95 in all systems predicted by two event generators

V. Riabov, NICA-MPD Seminar, 17.06.2021

FHCAL, offline z-vertex resolution

- $Z = (T_{FHCALW} T_{FHCALE}) / 2 * 30 [cm]$
- AuAu@11, z-resolution vs. centrality

• AuAu@5, z-resolution vs. centrality

- Z-vertex resolution is < 25 cm in AuAu@5,11; weak collision energy dependence
- No centrality bias for z-vertex is observed

FHCAL: Summary

- FHCAL shows very encouraging performance for event triggering in AuAu
- Predictions for FHCAL performance show model dependence; however basic performance parameters and trends are predicted to be the same
- FHCAL, trigger efficiency in Au-Au:
 - \checkmark higher efficiency in peripheral collisions in comparison with FFD
 - ✓ overall efficiency is ~ 95%, weak collision energy dependence, no z-vertex dependence
- FHCAL, T_0 and z-vertex in Au-Au:
 - ✓ offline z-vertex resolution is < 25 cm in AuAu@5,11; weak collision energy dependence
 - ✓ online z-vertex resolution is 20-25 cm in AuAu@5,11 (no averaging for modules, highest energies)
 - \checkmark T₀ measurements are meaningless
- FHCAL is not a substitute for FFD, both detectors should be used together to enhance trigger performance in peripheral collisions

FFD or FHCAL

Best options are used for the FFD and FHCAL:

- ✓ FFD: >= 1 channels per side
- ✓ FHCAL: >=1 modules per side

!FFD && FHCAL

• 20-35% collisions in centrality interval 80-100% fire the FHCAL but not the FFD

FFD && !FHCAL

- Only 2-6% peripheral collisions fire the FFD but not the FHCAL
- Trigger option FFD || FHCAL can take advantage of the two subsystems

FFD || FHCAL vs. impact parameter

• Observe quite significant model dependence for trigger efficiency.

FFD || FHCAL vs. centrality

- Observe quite significant model dependence for trigger efficiency
- Weak collision energy dependence

FFD || FHCAL vs. true z-vertex

- FFD || FHCAL trigger efficiency does not show z-vertex dependence
- FFD \parallel FHCAL trigger efficiency is ~ 0.94-0.98 predicted by two event generators

Track efficiency

Reconstructed track multiplicity is a measure of centrality !!!

Track "trigger efficiency", AuAu@11

- As expected, efficiency drops in peripheral collisions
- The efficiency shows rather small model dependence \rightarrow source of systematics

Track "trigger efficiency", AuAu@5

• DCM-QGSM-SMM, AuAu@5

- As expected, efficiency drops in peripheral collisions
- The efficiency shows strong model dependence \rightarrow source of systematics

V. Riabov, NICA-MPD Seminar, 17.06.2021

Summary

- FFD and FCAL, especially when taken together, provide rather high efficiency
- The best results are achieved with FFD || FHCAL logic
- Do not observe z-vertex dependence of trigger efficiency
- Only events triggered by FFD will have meaningful T₀ measurements, alternatives for T₀ measurements should be considered (TOF???)
- T_0 can be measured with $\sigma \le 50$ ps in AuAu@11 at all centralities
- T_0 can be measured with $\sigma \le 50$ ps in AuAu@5 at centrality values 0-30%; at higher centralities T_0 resolution rapidly drops \rightarrow alternatives???
- z-vertex can be measured with resolution < 5 and 25 cm with the FFD and FHCAL, respectively
- Bias and uncertainties for centrality determination using N_{ch} reconstructed in the TPC should be evaluated

BACKUP

DCM-QGSM-SMM

• AuAu@5

 $\pi^+ + \pi^ p + \overline{p}$ nions

• AuAu@11

PHQMD

 $\pi^{+} + \pi^{-}$

 $p + \overline{p}$

n

ions

• AuAu@5

• AuAu@11

Impact parameters (N^{TPC}_{tracks}>0)

DCM-QGSM-SMM

PHQMD

Slices from slide 14, AuAu@11

Slices from slide 14, AuAu@5

