

SPD S&C meeting, 22 June 2021

Primary vertex reconstruction and D^o selection in SPD experiment (update)

<u>V. Andreev</u>

Main vertex detector options

There are some questions of SPD DAC connected with the options of vertex detector and possibility to improve separation of D^0 meson

- 1. 2 configurations of silicon vertex detector were considered in SPD CDR
- 2. DSSD (c.t. = 300 mkm, 5 layers) = option = v0;
- 3. MAPS (c.t. = 50 mkm, 1,2,3 layers) + DSSD (c.t. = 300 mkm, 4,5 layers) => option=v3
- 4. MAPS (c.t. = 50 mkm, 4 layers) => option=v4 (new configuration was proposed by SPD DAC and is considered in this study, thank to Artur for quick providing of new version)

5. Errors MAPS: u = v = 4 mkm (effective) DSSD: u(z) = 23 mkm, v(x) = 11 mkm (effective)

6. <u>Question => is there any difference between option v3 and v4 of vertex detector ?</u>

Primary vertex resolution (vtx+straw)

Primary vertex space resolution

1. samples with 10 muons ($\mu^+ \mu$ -) are simulated for MAPS+DSSD and MAPS (4 layers) options

- 2. presence of 5 hits in VD for MAPS+DSSD and 4 hits in VD for pure MAPS (4 layers) options is required
- 3. then primary vertex was reconstructed

Primary vertex resolution (MB and muons)

Primary vertex space resolution

1. samples with 10 muons ($\mu^+ \mu$ -) are simulated for MAPS+DSSD and MAPS (4 layers) options

- 2. samples with Minimum Bias (MB) events are simulated for MAPS+DSSD and MAPS (4 layers)
- 3. presence of 5 hits in VD for MAPS+DSSD and 4 hitts in VD for pure MAPS (4 layers) options is required
- 4. new vertex detector configuration shows the similar precision for primary vertex resolution as MAPS+DSSD options

Track fit precision for 2 options of vertex detector

- 1. samples with uniform distribution of pions inside θ and ϕ angles are simulated
- 2. then standard track fit for 2 options of vertex detector MAPS+DSSD and MAPS (4 layers) is performed
- 3. select track with 5 hits in VD for MAPS+DSSD and 4 hits in VD for MAPS (4 layers)
- 4. select only pions inside barrel part of vertex detector

Track fit precision (vtx+straw)

Resolution: 0.5 GeV/c => \sim 1.0% (MAPS+DSSD) and \sim 0.6% (MAPS, 4 layers) 1.0 GeV/c => \sim 1.0% (MAPS+DSSD) and \sim 0.7% (MAPS, 4 ayers) 3.0 GeV/c => \sim 1.2% (MAPS+DSSD) and \sim 0.8% (MAPS, 4 layers)

Vertex detector option with 4 MAPS layers provides ~1.5 better track momentum resolution (!)

Track fit precision (only straw)

Resolution: 0.5 GeV/c => \sim 2.3% ; 1.0 GeV/c => \sim 2.7% ; 3.0 GeV/c => \sim 5.2%

Open charm selection (D⁰→K-pi+)

1. consider $D^0 \rightarrow K^- \pi^+$ decay (BR 3.9 %) => ct = 122.9 µm, M=1864,84 MeV/c²

2. cross-section MB ~35 mb (without elastic) and D^o production ~14 μ b

- 3. $\sim 2.5*10^3$ MB events and only 1 D^o event
- 4. ~6.4*10⁴ MB events and only 1 D⁰ event with $D^0
 ightarrow K^- \pi^+$ decay mode
- 5. events with $|x_{F}| > 0.2$ are more interesting

Selection cuts for D⁰→K-pi+

- 1. distance between 2 daughter particles (DOCA)
- 2. select tracks on the base of chi2 of track and primary reconstructed vertex

$$\chi^2_{prim} = \Delta \mathbf{r}^T (C_{track} + C_{PV})^{-1} \Delta \mathbf{r},$$

where Δr – distance between track and the primary vertex position, C_{track} is a covariance matrix of a track and C_{pv} is a covariance matrix of primary vertex

- 3. check L / dL decay length normalized on the error
- 4. θ angle of daughter particle (pi+)
- 5. angle of V0 candidate and primary vertex ($\cos\theta$)
- 6. use Armenteros-Podolanski plot

1. => simulate 6000 D0 and 10000 MB events (without any selection)

- 2. cut V0 candidate momentum (p > 2.7 GeV/c) => MB (~33%) and D0 (~26%, with ~70% of D0 reconstruction efficiency)
- 3. Armenteros-Podolanski band cut (cut1 < alfa1 < cut2) => MB (~16.5%) and D0 (~44%)
- 4. Armentros-Podolanski plot, band+range cut (|afa2| < 0.5) => MB (~2.5%) and D0 (~29%)
- 5. Armenteros-Podoanski plot cuts + momentum => MB (\sim 0.4%) and D0 (\sim 13.5%)

Armenteros-Podolaanski (without cut)

Armenteros-Podolanski (D0) Armenteros-Podolanski (MB) P_T, GeV/c P_T, GeV/c 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0.5 1 (p_L^+-p_L^-) / (p_L^++p_L^-) $\begin{array}{c} 0.5 & 1 \\ (p_{L}^{+} - p_{L}^{-}) \ / \ (p_{L}^{+} + p_{L}^{-}) \end{array}$ -0.5 -0.5 -1 -1 0 0

11

Armenteros-Podolanski plot (with band cut)

P_T, GeV/c P_T, GeV/c 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 $\begin{array}{c} 0.5 & 1 \\ (p_{L}^{*} \text{-} p_{L}^{\text{-}}) \; / \; (p_{L}^{*} \text{+} p_{L}^{\text{-}}) \end{array}$ $\begin{array}{c} 0.5 & 1 \\ (p_{L}^{*}\text{-}p_{L}^{-}) \; / \; (p_{L}^{*}\text{+}p_{L}^{-}) \end{array}$ -0.5 -0.5 -1 0 -1 0

Armenteros-Podolanski (MB)

Selection cuts for D⁰→K-pi+

ivariant mass of V0 candidate

ivariant mass of V0 candidate

1. selection efficiency => \sim 0.4% (MB) and \sim 13.5% (D0) with \sim 70% D0 reconstruction efficiency

2. result $6.4*10^4$ MB vs 1 D⁰ => ~256 MB events vs ~0.135 D⁰ events

Next step of simulation

- 1. add some kinematic cuts on generator level
- 2. for D⁰ meson sample => momentum of D⁰ > 2.6 GeV/c => \sim 2.5 times increasing statistic
- 3. for MB sample:
 - a) presence K⁻ meson in events
 - b) invariant mass of (K⁻ π^+) pair 1.665 < m < 2.065
 - c) momentum of (K⁻ π^+) pair > 2.6 GeV/c
 - d) all these selection cuts increase MB statistic \sim 40 times
- 4. 10000 of D^o mesons and 30000 MB events were simulated
- 5. effective number events => 25000 for D⁰ and $1.2*10^6$ for MB
- 6. after applying p>2.7 GeV/c, invariant mass |m-1.865|<0.070, band and range Armeteros-Podolanski cuts: selection efficiency =>7.8*10⁻⁴ MB and ~12.2% for D0
- 7. result 6.4*10⁴ MB vs 1 D⁰ => ~50 MB events vs 0.122 D⁰ events (S/B ~0.24%)

Next variables for selection (after applying Armenteros-Podolanski)

L/dL of V0 candidate

angle of V0 to PV

dist track2 vs PV

New selection cuts

- 1. add L/dL cut (>2.0) and angle between V0 candidate and line connected primary vertex and Secondary vertex
- 2. selection efficiency => $\sim 2.5*10^{-5}$ for Minimum Bias events and $\sim 4.9\%$ for D0 mesons
- 3. result 6.4*10⁴ MB vs 1 D⁰ => ~1.6 Minimum Bias events vs ~0.049 D⁰ events => ratio D⁰ / MB ~3.0%

From SPD CDR:

"Figure 9.24 (a) presents the K⁻ π^+ invariant mass spectrum obtained as the result of such a selection for the D⁰-signal in the kinematic range $|x_F| > 0.2$ as an example for both variants of the VD after one year of data taking. About 96% of the D⁰ \rightarrow K $- \pi$ + events were lost, while the combinatorial background under the D-meson peak was suppressed by 3 orders of magnitude. The signal-to-background ratio for D⁰ is about 1.3% for the DSSD configuration and about 3.9% for the DSSD+MAPS one."

Summary

- 1. new vertex detector options with 4 MAPS layers shows the same precision in vertex reconstruction as MAPS+DSSD configuration
- 2. new vertex detector options (MAPS, 4 layers) also provides better track momentum resolution
- 3. considered selection cuts give $\sim 5\%$ reconstruction efficiency for D⁰ and provide the signal-to-background ratio for D⁰ is about 3.0% for the MAPS+DSSD configuration
- 4. Plans:
 - a) tune cuts on generator level and increase statistics (~10 times)
 - b) optimize L/dL and angle cuts
 - c) check additional cuts (track distance to PV)