# Simulation of charmed particle production in Geant4/FTF A. Galoyan and V. Uzhinsky, 10.03.2020

**Charmed particles production was observed and measured in fixed target experiments performed in CERN, Fermilab and DESY** with hadron beams at energies from 200 GeV up to 900 GeV. Charmed particles production is studied by all **RHIC** and **LHC** collaborations. It is expected that the charmed particles will be copiously produced at FCC. Thus, simulation of charmed particles production and propagation in matter will be needed. Maybe, there is a possibility to study asymmetry of charmed particles at SPD.

Production of the charmed particles at high Pt can be described in QCD using mainly 4 parameters: heavy quark mass, coupling constant and 2 scales.



Fig. 1. Heavy flavour production mechanisms at leading order.

$$\frac{E_C d^3 \sigma_{AB \to CX}}{d^3 \mathbf{P_C}} = \sum_{abcd} \int dx_1 dx_2 f_A^a(x_1, Q^2) f_B^b(x_2, Q^2) \\ \times \frac{d\hat{\sigma}_{ab \to cd}}{d\hat{t}} D_c^C(z, Q^2) \frac{1}{\pi z}$$

PDF, LO, NLO, Frag. Funct.

## Charmed particles production is implemented in MC generators. First of all, it is presented in Pythia code.



Fig. 19.  $p_T^2$  (left) and  $x_F$  (right) distributions, as measured by the E791 Collaboration in 500 GeV  $\pi^-$ -C collisions and as calculated by Pythia, version 6.326.

Charmed particles production is implemented in MC generators Sibyll, DPMJET, Fritiof 7.0.

XVI International Symposium on Very High Energy Cosmic Ray Interactions ISVHECRI 2010, Batavia, IL, USA (28 June 2 July 2010) 1 Sibyll with charm Eun-Joo Ahn<sub>4</sub>, Ralph Engel<sub>b</sub>, Thomas K. Gaisser<sub>c</sub>, Paolo Lipari,d Todor Stanev

**CORSIKA** implementation of heavy quark production and propagation in extensive air showers A.Bueno, A. Gascyn Computer Physics Communications 185 (2014) 638–650

Charm production in DPMJET P Berghaus, T Montaruli1, and J Ranft Journal of Cosmology and Astroparticle Physics 06 (2008) 003



At the same time, there is another branch of theoretical research – Quark-Gluon String Model (QGSM) by A. Kaidalov and O. Piskunova pretended to describe charmed particles production with low Pt.

"Production of Charmed Particles in the Quark - Gluon String Model" Sov. J. Nucl. Phys. 43, 994 (1986)

G.I. Lykasov, G.H. Arakelian, M.N. Sergeenko Phys.Part.Nucl. 30 (1999) 343

S. I. Sinegovsky, M. N. Sorokovikov

Eur. Phys. J. C80 (2020) 34



$$1/\sigma_{inel}d\sigma/dx = \sum_{n=1}^{\infty} w_n \phi_n^h(x)$$

$$\Delta = 0.139 , \ \alpha' = 0.21 \ \text{GeV}^{-2} , \ \gamma_{pp} = 1.77 , \ \gamma_{\pi p} = 1.07 , R_{pp}^2 = 3.18 \ \text{GeV}^{-2} , \ R_{\pi p}^2 = 2.48 \ \text{GeV}^{-2} , \ C_{pp} = 1.5 , \ C_{\pi p} = 1.65$$

$$\phi_n^h(x) = f_{qq}^h(x_+, n) f_q^h(x_-, n) + f_q^h(x_+, n) f_{qq}^h(x_-, n) + 2(n-1) f_s^h(x_+, n) f_s^h(x_-, n)$$

$$f_q^h(x_+, n) = \int_{x_+}^1 u_q(x_1, n) G_q^h(x_+/x_1) dx_1$$

$$f_p^{u_v(n)}(x) = C_n^{u_v} x^{-\alpha_R(0)} (1-x)^{\alpha_R(0)-2\alpha_N(0)+n-1}, \qquad (10)$$

$$G_d^{D^-}(x/x_1) = G_{\bar{u}}^{D^0}(x/x_1) = (1-x/x_1)^{\lambda - \alpha_{\psi}(0)} [1+a_1(x/x_1)^2],$$
where  $\alpha_R(0) = 0.5, \ \alpha_N(0) = -0.5, \ \lambda = 2 < p_+^2 > \alpha_D^{(1)} = 0$ 

0.5, and the coefficient  $C_n^{u_v}$  is determined by normalization

The observed asymmetries of  $D^0$  – anti $D^0$ ,  $D^+$  -  $D^-$  and  $\Lambda_c$ - baryons are explained in the approach

| $u_{uu}(x,n) = C_{uu}x^{2.5}(1-x)^{n-1.5}$<br>$u_{ud}(x,n) = C_{ud}x^{1.5}(1-x)^{n-1.5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |       |       |        |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------|-------|--------|--|--|
| $u_u(x,n) = C_u x^{-0.5} (1-x)^{n+0.5}$<br>$u_d(x,n) = C_d x^{-0.5} (1-x)^{n+1.5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |       |       |        |  |  |
| $G_u^{\overline{D^0}} = G_d^{D^-} = a_0(1-z)^{\lambda - \alpha_{\psi}(0)}(1+a_1z^2) ,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |       |       |        |  |  |
| $G_u^{D^-} = G_u^{D^+} = G_u^{D^0} = G_d^{D^+} = G_d^{D^0} = G_d^{\overline{D^0}} = a_0(1-z)^{1+\lambda-\alpha_{\psi}(0)} ,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |       |       |        |  |  |
| $G_{uu}^{D^+} = G_{uu}^{D^-} = G_{uu}^{D^0} = G_{ud}^{D^+} = G_{ud}^{D^0} = a_0(1-z)^{3+\lambda-\alpha_{\psi}(0)}  ,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |       |       |        |  |  |
| $G_{uu}^{\overline{D^0}} = a_0(1-z)^{2+\lambda-\alpha_{\psi}(0)}(1+a_2z^2)  ,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |       |       |        |  |  |
| $G_{ud}^{\overline{D^0}} = a_0 (1-z)^{2+\lambda-\alpha_{\psi}(0)} (1-z+z)^{2+\lambda-\alpha_{\psi}(0)} $ | Parameter              | QGSMa | QGSMb | QGSMc  |  |  |
| $C^{\Lambda_c} = C^{\Lambda_c} = a_{\alpha_1}(1-\alpha)^{6+\lambda-\alpha_1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $lpha_\psi(0)$         | -2    | -2    | -2     |  |  |
| $G_{uu} \equiv G_{ud} \equiv a_{01}(1-z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $a_0$                  | 0.024 | 0.024 | 0.02   |  |  |
| $G_u^{\Lambda_c} = G_d^{\Lambda_c} = a_{01}(1-z)^{2+\lambda-\alpha_i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $a_1$                  | 10    | 10    | 0      |  |  |
| $G_{\overline{z}}^{\Lambda_c} = G_{\overline{z}}^{\Lambda_c} = G_{\overline{z}}^{\Lambda_c} (1-z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $a_2$                  | 50    | 50    | 16     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a <sub>01</sub>        | 0.011 | 0.011 | 0.007  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $a_{02}$               | 0.005 | .005  | 0.0025 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\alpha_{\Upsilon}(0)$ | -8    | -8    | -8     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $b_0$                  | 0.011 | 0.011 | 0.0055 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $b_1$                  | 5     | 5     | 6      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $b_2$                  | 25    | 25    | 40     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $b_{01}$               | 0.005 | 0.005 | 0.0015 |  |  |

 $b_{02}$ 

0.0004

0.0018

.0004

Implementation in Geant 4: QGS and FTF models

G4VLongitudinalStringDecay G4LundStringFragmentation G4QGSMFragmentation

G4FTFParameters G4Reggeons

#### G4VLongitudinalStringDecay:

G4double ProbCCbar; // Probability of C-Cbar pair creation // Uzhi 2019 G4double ProbEta\_c; // Mixing of Eta\_c and J/Psi G4double ProbBBbar; // Probability of B-Bbar pair creation // Uzhi 2019 G4double ProbEta\_b; // Mixing of Eta\_b and Ipsilon\_b G4double ProbCB; // = ProbCCbar + ProbBBbar

G4double minMassQQbarStr[5][5]; G4double minMassQDiQStr[5][5][5];

 G4int
 Meson[5][5][7];
 // Uzhi 2019 [3][3][6] -> [5][5][6]

 G4double
 MesonWeight[5][5][7];
 // Uzhi 2019 [3][3][6] -> [5][5][6]

 G4int
 Baryon[5][5][5][4];
 // Uzhi 2019 [3][3][3][4] -> [5][5][5][4]

 G4double
 BaryonWeight[5][5][5][4];
 // Uzhi 2019 [3][3][3][4] -> [5][5][5][4]

| Implementation in Geant 4:<br>G4VLongitudinalStringDecay                                  | QGS and FTF models     |  |  |  |  |
|-------------------------------------------------------------------------------------------|------------------------|--|--|--|--|
| G4LundStringFragmentation                                                                 | <b>G4FTFParameters</b> |  |  |  |  |
| G4QGSMFragmentation                                                                       | G4Reggeons             |  |  |  |  |
| void G4QGSMFragmentation::SetFFq2q()                                                      |                        |  |  |  |  |
| $\{ // // q \rightarrow q' + Meson (q anti q') \}$                                        |                        |  |  |  |  |
| for(G4int i=0; i < 5; i++){                                                               |                        |  |  |  |  |
| FFq2q[i][0][0] = 2.0; $FFq2q[i][0][1] = -arho + alft; //q->d + (q dbar) Pi0$ , Eta, Eta', |                        |  |  |  |  |
| FFq2q[i][1][0] = 2.0; $FFq2q[i][1][1] = -arho + alft; // q->u + (q ubar) Pi-, Rho-$       |                        |  |  |  |  |
| FFq2q[i][2][0] = 1.0; $FFq2q[i][2][1] = -aphi + alft; // q->s + (q sbar) K0, K*0$         |                        |  |  |  |  |
| FFq2q[i][3][0] = 1.0; $FFq2q[i][3][1] = -aJPs + alft; //q->c + (q+cbar) D-, D*-$          |                        |  |  |  |  |
| FFq2q[i][4][0] = 1.0; $FFq2q[i][4][1] = -aUps + alft; // q->b + (q bbar) EtaB$ , Upsilon  |                        |  |  |  |  |
| //                                                                                        |                        |  |  |  |  |
| }                                                                                         |                        |  |  |  |  |
| }                                                                                         |                        |  |  |  |  |
| void G4QGSMFragmentation::SetFFq2qq() // $q$ -> anti (q1'q2') + Baryon (q + q1 + q2)      |                        |  |  |  |  |
| { for(G4int i=0; i < 5; i++){// ???                                                       |                        |  |  |  |  |
| FFq2qq[i][0][0] = 0.0; $FFq2qq[i][0][1] = arho - 2.0*an + alft ;//q->dd bar + (q dd)$     |                        |  |  |  |  |
| FFq2qq[i][1][0] = 0.0; $FFq2qq[i][1][1] = arho - 2.0*an + alft ;//q->ud bar + (q ud)$     |                        |  |  |  |  |
| FFq2qq[i][2][0] = 0.0; $FFq2qq[i][2][1] = arho - 2.0*ala + alft ;//q->sd bar + (q sd)$    |                        |  |  |  |  |
| FFq2qq[i][3][0] = 0.0; $FFq2qq[i][3][1] = arho - 2.0*alaC + alft ;//q->cd bar + (q cd)$   |                        |  |  |  |  |
| }                                                                                         |                        |  |  |  |  |

#### Cross sections of PP, PbarP, $\pi^{\pm}P$ , K<sup>±</sup> P , PN, PbarN and so on are

Barashenkov-Glauber-Gribov cross sections

#### **Recent developments in Geant4**

J. Allison (Geant4 Assoc. & Manchester U.) et al. Nucl.Instrum.Meth. A835 (2016) 186



For heavy (charmed and bottom) hadrons we use cross sections by Grishin's extension for strange, charmed and beauty hadron projectiles! A corresponding paper is prepared by Geant4 developers. if ( PDGcode == 511 || PDGcode ==-511 || PDGcode == 521 || PDGcode ==-521 ) { coeff = llMesCof1B; } if (PDGcode == 421 || PDGcode ==-421 || PDGcode == 411 || PDGcode ==-411 ) { coeff = llMesCof1C; }

Gamma\_pomeron\_Pr \*= coeff;

## **Tuning of charm quark production probability**

#### Heavy flavour hadro-production from fixed-target to collider energies C. Lourenco (CERN), H.K. Wohri (Lisbon, IST & CERN). Phys.Rept. 433 (2006) P.127

There is a review of the hadro-production data presently available on open charm and beauty absolute production cross-sections, collected by experiments at CERN, DESY and Fermilab. The published charm production cross-section values are updated, in particular for the "time evolution" of the branching ratios. There are summarised the data used in the present study, obtained with proton and pion beams, at energies ranging from Elab = 200 to 920 GeV.



## **Tuning of charm quark production probability**

#### Heavy flavour hadro-production from fixed-target to collider energies C. Lourenco (CERN), H.K. Wohri (Lisbon, IST & CERN). 2006. Phys.Rept. 433 (2006) 127-180



**Feynman-x and Transverse Momentum Dependence of D Meson Production in 250 GeV p, K, and**  $\pi$  **Interactions with Nuclei .** (Fermilab E769 Collaboration) G. A. Alves, et.al, **Phys.Rev. Lett, V77, N 12, 1996, 239** 

The E769 data set was collected using collisions of negatively and positively charged 250 GeV mixed secondary beams on a multifoil target of Be, Cu, Al, and W. D meson signals are obtained by combining the decays:  $D+\rightarrow K-pi+pi+$ ,



Measurements of charmed-meson production in interactions between 350 GeV/c  $\pi$ -particles and nuclei.

Beatrice Collaboration (Adamovich.et al.,) Nucl. Phys. B495 (1997) 3-37



The Pt<sup>2</sup> spectra obtained for different types of charmed meson all have a similar shape.

#### **D-Meson Production in 800-GeV/c pp Interactions** .

LEBC-MPS Collaboration (R. Ammar et. al.,) **Phys. Rev. Lett. 61, N19, 1988, P.2185** Here, measurements of the D meson Xf and Pt behaviour are determined from both liquid hydrogen bubble chamber

(LEBS) and mutiparticle spectrometer Fermilab MPS. The apparatus was exposed to 800-GeV/c protons.



The authors used QCD parton-fusion model for describing these data. In the paper inclusive D meson production cross sections were given at 800 GeV/c for all Xf.

# Measurement of D<sup>0</sup>, D<sup>+</sup>, D<sub>s</sub><sup>+</sup> and D<sup>\*+</sup> production in fixed target 920 GeV proton–nucleus collisions. The HERA-B Collaboration (I. Abt et al., ) Eur. Phys. J. C 52, 531(2007)

Collisions of the 920 GeV HERA accelerator proton beam in C, Ti and W fixed targets have been measured with the HERA-B fixed targed spectrometer. Here D represents a D<sup>0</sup>, D<sup>+</sup>, D<sub>s</sub><sup>+</sup> or D<sup>\*+</sup> detected through the decay channels: D<sup>0</sup>  $\rightarrow$  K<sup>-</sup> $\pi^+$ , D<sup>+</sup> $\rightarrow$ K<sup>-</sup> $\pi^+\pi^+$ , D<sub>s</sub><sup>+</sup> $\rightarrow \phi\pi^+ \rightarrow$ K<sup>-</sup>K<sup>+</sup> $\pi^+$ , and D<sup>\*+</sup> $\rightarrow$ D<sup>0</sup> $\pi^+ \rightarrow$ K<sup>-</sup> $\pi^+\pi^+$  and charge conj. channels.



Hadronic production of Ac from 600 GeV/c  $\pi$  – ,  $\Sigma$ – and p beams. SELEX Collaboration (F.G. Garcia et/al.,) Physics Letters B 528 (2002) 49

FTF PP 540 GeV/c

**FTF**  $\Sigma$ - P 600 GeV/c



Exp. data show that Xf dependence of  $\Lambda c+$  production is similar for all three beams. Both baryon beams show a strong enhancement of the production of  $\Lambda c+$  over  $\Lambda c-$ , while the two are produced comparably from a pion beam.



# Conclusion

For the first time, charm production is implemented in G4 hadronic generators – FTF and QGS models.

**1. BGG cross sections** with Grishin's extension are used for estimations of X's of charmed and beauty particles interactions with nuclei

2. Charmed quark pair production Probability is estimated approximately.

3. Differential cross sections of **D**-meson production in **PP** and  $\pi$ **P** interactions at energies from 200 GeV/c to 920 GeV/c are calculated in FTF and QGS models.

4.Comparison with exp. data shows quite good description of **D-meson** Pt<sup>2</sup> distributions in FTF model. QGS model with Gaussian distribution for Pt<sup>2</sup> does not give reasonable results for Pt<sup>2</sup> distributions. First attempt of implementation of "mT" distribution in QGSM leads to promising results.

Results of comparison for Xf distributions of **D-mesons** are satisfactorily at low energies. At high energies, it is needed to take into account **QCD** processes for description of Xf spectra.

5. Xf and Pt2 distributions are calculated for  $\Lambda c^+$  and  $\Lambda c^-$  produced in PP,  $\pi^-P$ , and  $\Sigma^-P$  interactions at initial momenta 600 GeV/c and compared with exp. data. Calculated Pt2 distributions are comparable with exp. data. To reproduce Xf spectra of  $\Lambda c^{\pm}$ , it is needed a fine tuning of FTF parameters.

SetProbCCbar(0.0); //(0.005); // According to O.I. Piskunova Yad. Fiz. 56 (1993) 1094 SetProbBBbar(0.0); //(5.0e-5); // According to O.I. Piskunova Yad. Fiz. 56 (1993) 1094