

33-я Всероссийская конференция по космическим лучам

ALEGRO ЧЕРЕНКОВСКАЯ ГАММА-ОБСЕРВАТОРИЯ НОВОГО ПОКОЛЕНИЯ

Г.И. Васильев, Е.Е. Холупенко, Д.А. Байко, А.А. Кожберов, А.М. Быков, А.М. Красильщиков

Политехническая ул., 26, С.-Петербург, 194021 Телефон: (812) 297-2245 Факс: (812) 297-1017 post@mail.ioffe.ru http://www.ioffe.ru

Исследование выполнено при поддержке РФФИ (грант 13-02-12017-офи-м)

Аннотация

В работе представлены результаты моделирования широких атмосферных ливней от космических фотонов с энергиями 5 – 100 ГэВ. На основе выполненных расчетов предложена концепция и оценены основные параметры наземной черенковской гамма-обсерватории нового поколения. Одной из ключевых задач такой обсерватории будет исследование малоизученной области гамма-диапазона 5 – 50 ГэВ, что позволит выполнять высокочувствительные наблюдения остатков сверхновых звезд, пульсарных туманностей и гамма-всплесков, которые не могут быть проведены с нынешним поколением гамма-телескопов.

Мотивация

В настоящее время существует проблема «разрыва» в доступном наблюдениям спектре космического гамма-излучения, которая состоит в следующем:

1) Потоки фотонов в диапазоне энергий 0.1 МэВ – 1 ГэВ от типичных гаммаисточников достаточно велики и могут наблюдаться орбитальными приборами даже при не очень большой эффективной площади $10^3 - 10^4$ см² (см., например, Abdo et al., ApJ, 703, 1249, 2009). Но на более высоких энергиях потоки гамма-излучения от тех же источников столь малы, что уже не могут быть достоверно зарегистрированы этими приборами в разумные сроки (1 – 2 года).

2) Апертура наземных гамма-телескопов достаточно велика ($10^4 - 10^5 \text{ м}^2$), чтобы наблюдать даже небольшие потоки гамма-квантов от типичных космических источников на энергиях вплоть до 10-30 ТэВ (см. напр. Okumura et al., ApJ, 579, L9, 2002). Но в силу специфики метода регистрации (регистрируется не сам гамма-квант, а черенковская вспышка, порожденная им в атмосфере Земли) современные наземные гамма-телескопы не могут достоверно регистрировать космические гамма-кванты с энергиями менее $30-50 \Gamma$ эВ.

Таким образом, в настоящее время в наблюдаемых гамма-спектрах космических объектов почти всегда (за исключением самых ярких объектов, напр. Aleksic et al., A&A, 544, A142, 2012) имеется разрыв с характерными границами 5 – 50 ГэВ. Проблема нехватки информации о свойствах гамма-спектров в диапазоне «разрыва» усугубляется тем, что для некоторых типов источников (например, для микроквазаров Bednarek, MNRAS Letters, 418, L49, 2011) в этом диапазоне можно предполагать существенные изменения свойств спектров или наличие спектральных особенностей (напр. экспоненциальный "завал" в спектрах пульсаров Abdo et al., ApJ, 744, 146, 2012).

Для того чтобы ликвидировать недостаток информации о свойствах гамма-спектров ряда космических объектов в физически важном диапазоне 5 – 50 ГэВ и существенно улучшить статистику на более высоких энергиях, уже доступных наземным наблюдениям, мы предлагаем проект новой наземной черенковской гамма-обсерватории ALEGRO.

Принцип действия наземных черенковских гамма-телескопов

Цели и задачи моделирования в рамках проекта ALEGRO

- Одной из необходимых стадий работы над проектом наземной черенковской гамма-обсерватории является численное моделирование для определения характеристик разрабатываемого инструмента (пороговой энергии наблюдений, углового и энергетического разрешения, предельных углов наблюдения, чувствительности к атмосферным и геомагнитным условиям и т.д.), которое включает в себя следующие этапы:
- 1) Моделирование широких атмосферных ливней, вызванных энергичными космическими частицами, и их компоненты, наблюдаемой обсерваторией - черенковского излучения
- 2) Моделирование телескопа в рамках заданной концепции и дизайна
 - а) моделирование светособирающей части телескопа зеркала
 - b) моделирование регистрирующей камеры
- 3) Моделирование обработки наблюдательных данных
 - а) моделирование аппаратной обработки данных
 - b) моделирование программной обработки данных

Моделирование выполняется с помощью оригинального пакета кодов **ALEGRO Soft**

Прототипы проекта

Прототипами обсерватории ALEGRO могут служить действующие наземные гамма-обсерватории H.E.S.S. II, MAGIC II и планируемая обсерватория MACE.

	MACE, K.Yadav, VHEPU 2013	ALEGRO	4000 SO. ANNULAR CAMERA FOCAL PLANE
Диаметр зеркала, м	21	30	SO FOCAL PLANE ZENITAL ZENITAL ZENITAL AXIS CABLE DRAG CHAIN AZIMUTHAL MOTOR AZIMUTHAL MOTOR AZIMUTHAL MOTOR
Высота стояния a.s.l., м	4200	~5000	
Пороговая энергия, ГэВ	~20	~5	
Количество пикселей	1088	11310	Дизайн телескопа МАСЕ

http://www.barc.gov.in/pg/nrl-harl/mace.html

Оригинальный код для моделирования ШАЛ

ALEGRO Soft кода пакете ЛЛЯ В моделирования ШАЛ (на основе пакета библиотек GEANT) продиктована тем, что существующие коды не полностью приспособлены для моделирования ШАЛ от первичных частиц относительно низких энергий (<20 ГэВ). Например, CORSIKA объединяет черенковские фотоны в пучки с идентичными направляющими векторами, что не позволяет корректно моделировать изображение ШАЛ в телескопе в случае если в фокальную плоскость попадает 10² – 10³ черенковских фотонов. Тем не менее работы результаты кодов допускают статистическое сравнение, примеры которого представлены на рисунке слева: графики показаны зависимости поверхностной плотности черенковских фотонов (ППЧФ, м⁻²) от расстояния до оси ливня r, м. Черные кривые показывают полученные результаты, помощью С оригинального кода ALEGRO Soft, серые кривые показывают результаты, полученные с помощью кода CORSIKA. Показанные среднеквадратичные отклонения соответствуют 1σ. Энергия первичного гамма-кванта и высота наблюдения над уровнем моря указаны на графиках.

создания

оригинального

Необходимость

Преимущество размещения планируемой гамма-обсерватории на большой высоте

Эффективность наземной гамма-обсерватории напрямую зависит OT количества черенковских фотонов, которое может быть собрано зеркалами телескопов. На высоте 5 км средняя поверхностная плотность черенковсфотонов (ППЧФ), КИХ соответствующая одной и той же энергии первичных частиц, может более два раза пречем B вышать ППЧФ на высоте 2 км, на которой расположены гаммаобсерватории H.E.S.S. и MAGIC.

Зависимость среднего значения ППЧФ от расстояния до оси ливня для различных энергий первичного гамма-кванта (указаны рядом с кривыми) и высот наблюдения.

Энергия Е первичной частицы оценивается по значению ППЧФ р. Таким образом, энергетическое разрешение зависит от величины флуктуаций ППЧФ:

$\Delta E/E \approx \Delta \rho/\rho.$

В работе Васильева и др. 2011 было показано что у ППЧФ от первичных гамма-квантов С энергией 5 ГэВ около отсутствует среднеквадратичобласти отклонение ное В ствола ливня (r<50 м).

Тем не менее планируемая конфигурация обсерватории предполагает, что как минимум один из четырех телескопов обсерватории будет находится вне ствола ШАЛ, что позволяет ожидать величину энергетического разрешения $\Delta E/E \sim 1$ при энергии первичного гаммакванта 5 ГэВ 10

Относительная величина флуктуаций ППЧФ ∆р/р как функция расстояния до оси ливня, рассчитанная по серии событий. Серым цветом показана область, где приведенный результат несправедлив (Васильев и др., НТВ СПбГПУ, № 4 (134), 79, 2011)

Пример распределения ППЧФ ШАЛ, вызванного первичным гамма-квантом с энергией 5 ГэВ, на высоте 5 км над уровнем моря

Пример моделирования сигнала, формирующегося в фокальной плоскости телескопа, и его последующей обработки

Изображения получены для события, ППЧФ которого приведена на слайде 11. Четыре телескопа расположены в точках с координатами (100 м, 0 м), (0 м, 100 м), (-100 м, 0 м), (0 м, -100 м)

23

15

9,8 6,4 4,2

2,7 1.8

1,2 0,76 0,50 **Пояснение к рисунку на слайде 12.** Изображения в фокальных плоскостях телескопов (для удобства восприятия фокальные плоскости всех телескопов приведены на одном рисунке): Цвет отражает интенсивность засветки пикселя на рис. *а*, *б*, *в*, т.е. количество фотонов (натуральное число), попавших в пиксель в течение временного промежутка характерной длительности 10 нс. *a* – черенковская вспышка, сформировавшаяся при взаимодействии гамма-кванта (энергией 5 ГэВ) с атмосферой; *б* – оптический фон ночного неба; *в* – совместное изображение *a* и *б* – модель реального сигнала поступающего в камеру телескопа; *г* – изображение, полученное из изображения *в* путем моделирования регистрации сигнала с эффективностью 0.30+/-0.07 единиц/фотон и последующей обработки фильтром ALEGRO Soft для очистки от оптического фона. Максимальные значения интенсивностей составляют 30 фотонов/пиксель (*a*), 18 ф/п (*б*), 35 ф/п (*в*), 5 единиц/пиксель (*г*). Для всех изображений справедлива единая цветовая шкала, показанная справа от изображения (*б*). Разница в размерности и амплитуде величин, приведенных на рис. *в* и *г* объясняется учетом эффективности детектирования фотонов и особенностями математической обработки сигнала согласно разработанному алгоритму.

Определение направления прихода первичной частицы и оценка углового разрешения планируемой обсерватории

14

Пояснение к рисунку на слайде 14. а) Изображения черенковской вспышки в фокальных плоскостях четырех телескопов. Данная черенковская вспышка вызвана ШАЛ от вертикально падающего гамма-кванта энергии 20 ГэВ. Изображение получено в процессе моделирования ШАЛ с помощью симулирующей части пакета ALEGRO Soft; б) Изображение, формирующееся оптическим фоном ночного неба в фокальной плоскости телескопа за 10 нс. Изображение получено с помощью симулятора оптического фона ночного неба пакета ALEGRO Soft; в) Совместное изображение черенковской вспышки и оптического фона - модель реального сигнала, регистрируемого гамма-обсерваторией; г) Изображение после обработки аналитической частью пакета кодов ALEGRO Soft: произведена очистка от оптического шума и анализ параметров Хилласа для определения направления прихода первичной частицы. Желтые эллипсы фитирующие эллипсы Хилласа, направление больших главных осей которых показывает направление развития ШАЛ в атмосфере. Желтые прямые показывают направление больших главных осей эллипсов Хилласа. Розовая точка показывает восстановленное направление прихода первичного гамма-кванта, вычисленное по усредненному значению координат пересечений желтых прямых (отобранных в соответствии с заданными критериями). Зеленый крест показывает координаты истинного направления прихода первичного гамма-кванта. Зеленый эллипс - контур доверительного определения направления прихода первичной частицы по уровню 1σ, определяющий угловое разрешение телескопа при данном алгоритме обработки. Размер большой полуоси зеленого эллипса соответствует примерно 0.16⁰. Данное угловое разрешение рассчитано как среднеквадратичное отклонение восстановленных направлений прихода первичных гамма-квантов по примерно 8% изображений, отобранным для анализа в соответствии с заданными критериями из 10⁵ исходных изображений типа в) [пар событие-фон, сгенерированных из серии в 500 событий и 200 реализаций оптического фона]. Полное поле зрения телескопов обсерватории 2.9⁰ соответствует 120 пикселам. Оценка проведена для вертикального падения кванта, но остается справедливой для малых зенитных углов наблюдения.

Заключение

1. Среднее значение поверхностной плотности черенковских фотонов (ППЧФ) достаточно велико для регистрации космических у-квантов энергии 5 ГэВ с помощью системы оптических телескопов с диаметром зеркала 30 м, установленной на высоте 5 км. Также оценки показывают, что при размещении на высоте 5 км, гамма-обсерватория будет иметь как минимум в полтора раза более низкую пороговую энергию наблюдений, чем при размещении на высоте 2 км при прочих равных условиях.

2. Влияние оптического фона ночного неба существенно для процесса регистрации космических у-квантов в диапазоне 1 - 10 ГэВ, но тем не менее еще не является непреодолимым природным препятствием для регистрации космического гаммаизлучения, в частности измерения кривых блеска гамма-вспышек. Вероятность регистрации гамма-кванта (без сохранения информации об энергии и направлении прихода, что тем не менее, достаточно для измерения кривых блеска N_v(t)), составляет около 50% для гамма-квантов с энергией 3 ГэВ при малых зенитных углах наблюдения. 3. Ожидаемое энергетическое разрешение ΔЕ/Е составляет ~1 на энергии 5 ГэВ и ~0.2 на энергии 100 ГэВ.

4. Путем выбора критериев отбора анализируемых изображений может быть достигнуто угловое разрешение 0.16⁰ на энергии 20 ГэВ при малых зенитных углах наблюдения.

Моделирование показывает, что обсерватория ALEGRO в случае реализации будет эффективным инструментом для наблюдений космических источников гамма-излучения в диапазоне энергий свыше 5 ГэВ. Эта обсерватория позволит решить ряд актуальных задач экспериментальной гамма-астрономии и астрофизики высоких энергий.