

# Первые результаты поиска нейтринных всплесков по совместным данным БПСТ и LVD

Р.В. Новосельцева<sup>1</sup>, Н.Ю. Агафонова<sup>1</sup>, В.В. Ашихмин<sup>1</sup>, М.М. Болиев<sup>1</sup>, В.В. Волченко<sup>1</sup>, Г.В. Волченко<sup>1</sup>, И.М. Дзапарова<sup>1</sup>, Р.И. Еникеев<sup>1</sup>, М.М. Кочкаров<sup>1</sup>, Ю.Ф. Новосельцев<sup>1</sup>, В.Б. Петков<sup>1, 2</sup>, О.Г. Ряжская<sup>1</sup>, А.Ф. Янин<sup>1</sup> и LVD Коллаборация <sup>1</sup> Институт ядерных исследований РАН, Москва, Россия <sup>2</sup>Институт астрономии РАН, Москва, Россия



0,026 -

Корреляционный анализ данных установок, работающих в режиме поиска коллапсов звезд, позволяет с большей чувствительностью следить за коллапсами, повысить достоверность идентификаций нейтринных сигналов и осуществлять поиск редких нейтринных событий от галактических и внегалактических источников нейтрино.

Для установки БПСТ сигнал считается значимым, если в кластере более 9 событий.

Алгоритм отбора кандидатов на нейтринные всплески основан на поиске кластеров из N импульсов в течение временного окна фиксированной ширины. Вероятность появления кластера фоновых импульсов может быть установлена применительно к длительным периодам сбора данных, что позволяет определить значимость событиякандидата на нейтринный всплеск в единицах частоты его имитации фоном.



установке БПСТ, используемых в данной работе



**ID154** 

работе. Для данных на рис.3 дополнительное условие отбора – энерговыделение в счетчике E>8MeV. По оси абсцисс- номер файла LVD\_dat с данными LVD (2012 год)

Наиболее подходящей реакцией в рамках стандартной модели коллапса является реакция взаимодействия электронных антинейтрино с водородом, поскольку эта реакция обладает максимальным сечением:

### 1. Оценка кратности кластеров от Сверхновой

В предположении одинаковой эффективности регистрации электронных антинейтрино от вспышки Сверхновой на установках LVD и БПСТ, оценим среднюю кратность кластера в LVD  $\overline{k}_{LVD}$  при заданном значении кратности кластера в БПСТ  $k_{BUST}$ :

$$\bar{k}_{LVD} = \xi * k_{BUST}, (1)$$
  
 $M_{LVD} / M_{BUST} = 7.7 (2)$ 

$$G = IVI_{LVD} / IVI_{BUST}$$
  
M<sub>LVD</sub> = 1000 T, M<sub>BUST</sub> = 130 T.

В таблице 1 приведены полученные по формулам (1) и (2) значения кратностей в LVD для кратностей в БПСТ от 1 до 9; приведены соответствующие расстояние R<sub>SN</sub> до Сверхновой [2].

$$\overline{\nu}_{e} + p \rightarrow n + e^{+},$$
$$E_{e^{+}} = E_{\overline{\nu}_{e}} - 1,8 \, MeV$$

| Таблица1          |                              |                                  |  |  |  |
|-------------------|------------------------------|----------------------------------|--|--|--|
| k <sub>BUST</sub> | $R_{_{SN}}, \hat{e}i\hat{e}$ | $ar{k}_{\scriptscriptstyle LVD}$ |  |  |  |
| 1                 | 56.6                         | 7.7                              |  |  |  |
| 2                 | 40.0                         | 15.4                             |  |  |  |
| 3                 | 32.7                         | 23.1                             |  |  |  |
| 4                 | 28.3                         | 30.8                             |  |  |  |
| 5                 | 25.3                         | 38.5                             |  |  |  |
| 6                 | 23.1                         | 46.2                             |  |  |  |
| 7                 | 21.4                         | 53.9                             |  |  |  |
| 8                 | 20.0                         | 61.6                             |  |  |  |

18.9

69.3

k<sub>BUST</sub>=4

9

N(k<sub>40</sub>-

## <u>3.Выбор интервалов в БПСТ и LVD для поиска событий от Сверхновых</u>

Т.к. в кластере от Сверхновой в LVD должно быть больше сработавших (одиночных) детекторов, чем в БПСТ, в среднем длительность зарегистрированного БПСТ кластера  $\Delta t_{BUST}$  будет короче длительности кластера, зарегистрированного LVD  $\Delta t_{LVD}$  и  $\Delta t_{BUST}$  будет находиться внутри  $\Delta t_{LVD}$ . Поэтому для корректного поиска совпавших кластеров от Сверхновых необходимо сделать расчёты (средних) длительностей кластеров и средних задержек между кластерами в БПСТ и LVD для различных расстояний до Сверхновой. В общем случае, результаты поиска совпадений зависят от выбора интервала и отбора кластеров.

В качестве иллюстрации рассмотрим еще один вариант - для каждого кластера в БПСТ, который начинается в $t_{BUST}^{(0)}$  ищется 20-ти секундный кластер в LVD, начало которого  $t_{LVD}^{(0)}$ находится в интервале от ( $t_{BUST}^{(0)}$  – 10 секунд) до  $t_{BUST}^{(0)}$ . Из всех кластеров, удовлетворяющих этому условию, находится кластер с максимальной кратностью. Этот кластер и ставится в соответствие кластеру в БПСТ с началом в  $t_{BUST}^{(0)}$ . На рисунке 7 приведены распределения по числу кластеров в LVD для двух вариантов выбора интервала, k<sub>вист</sub> = 5.

### 2. Поиск кластеров в LVD для выделенных кластеров в БПСТ

Пусть k<sub>визт</sub> - кратность кластера в БПСТ, т.е. число импульсов в интервале ∆t = 20 секунд. Мы используем скользящий интервал, время начала которого совпадает со временем срабатывания первого счетчика в кластере. Кратность кластера в LVD k<sub>LVD</sub> определялась для интервала ∆t = 20 секунд, начало которого совпадает в пределах 0.1 секунды с началом кластера БПСТ: $t_{LVD}^{(0)} = t_{BUST}^{(0)} \pm 0.1 \text{sec}$  Поиск кластеров в LVD был проведён для найденных в БПСТ за 2012 год кластеров кратности 3 -7. В табл.2 приведены исходные данные и результаты обработки: N число кластеров в БПСТ за тот период 2012 года, когда одновременно анализировались данные с обеих установок (326.1 суток чистого времени); N<sub>coin</sub>- число совпавших кластеров LVD.

На рис.4-6 приведены данные без каких-либо условий отбора событий в данных LVD. На рис. 4 приведено распределение кластеров LVD по кратности для значения кратности кластера в БПСТ k<sub>вист</sub> = 4. События для кластера со множественностью 118 находятся в LVD\_dat=398825. На рис.6 приведены распределения кластеров LVD по кратности для значений k<sub>вust</sub> = 3, 4, 5. Линией показана средняя кратность кластера в LVD, соответствующая кратности  $k_{BUST}$  (для  $k_{BUST}$  =6, 7 совпало по одному кластеру из данных LVD). Как видно из рисунков, для значений кратности в БПСТ k<sub>вUST</sub> =3,4,5 значения кратностей в LVD, ожидаемые от Сверхновых, невозможно выделить из фона случайных совпадений (по меньшей мере, при данных условиях отбора событий). Распределения по k<sub>LVD</sub> подобны и отличаются только статистикой (рис.6).

| Таблица 2 |         |  | -   | շիներո |  |
|-----------|---------|--|-----|--------|--|
| Множест-  |         |  |     | п      |  |
| венность  | N-число |  | 100 | U      |  |





#### 4.Выводы

Рис.5 Темп счета одиночных событий на установке LVD (по оси абсцисс – номер файла LVD\_dat)

 $k_{LVD} = 38.7 \ (k_{BUST} = 3)$ 

 $\bar{k}_{LVD} = 38.4 \ (k_{BUST} = 4)$ 

 $\bar{k}_{LVD} = 36.1 \ (k_{BUST} = 5)$ 

 $k_{LVD} = 48 \ (k_{BUST} = 6)$ 

 $/k_{LVD} = 35 \ (k_{BUST} = 7)$ 

Рис.4 k

Разработана методика совместного анализа экспериментальных данных установок LVD и БПСТ и проведён совместный поиск редких нейтринных событий от Галактических источников.

Проведён совместный анализ экспериментальных данных установок LVD и БПСТ за период 2012 года длительностью 326.1 суток чистого времени.

Получены распределения по кратности кластеров в LVD для кластеров в БПСТ



с кратностью от 3 до 5. Полученные распределения, при используемых условиях отбора событий, можно объяснить случайными совпадениями фоновых событий в установках LVD и БПСТ.

- О.Г. Ряжская. Нейтрино от гравитационных коллапсов звезд: современный статус эксперимента. УФН, т. 176, №10, с. 1039, 2006. 2 Е.Н. Алексеев и др. Ограничение на частоту коллапсов массивных звезд в Галактике по данным наблюдения в 1980-1992 годах на Баксанском подземном
  - сцинтилляционном телескопе. ЖЭТФ, т. 104, в. 3(9), с.2897, 1993.
- 3. Н.Ю. Агафонова и др. Поиск различных типов нейтрино от коллапсирующих звезд с помощью детектора LVD. Известия РАН, сер. физ., т. 75, №3, (2011), 445, 2011. 4. Р.В. Новосельцева и др. Поиск нейтринных всплесков на Баксанском подземном

сцинтилляционном телескопе. Известия РАН, сер. физ., т.75, N 3, с.453, 2011

\*Работа поддержана Российским Фондом Фундаментальных исследований (Грант 12-02-12127) и программой Президиума РАН «Фундаментальные свойства материи и астрофизика».

33-я Всероссийская конференция по космическим лучам 11-15 августа, Дубна, 2014