Основные результаты исследования космических лучей сверхвысоких энергий на Якутской установке ШАЛ

М.И. Правдин

33-я ВККЛ г. Дубна МО 11-15 августа 2014 г.

Институт космофизических исследований и аэрономии СО РАН им. Ю.Г. Шафера

План доклада

- -Якутская установка ШАЛ современный статус
- Оценка энергии в ливнях и спектр КЛ
- -Результаты по анизотропии
- -Оценки массового состава
- Другие результаты Якутской установки
- Развитие Якутской установки ШАЛ
- Заключение

ЯКУТСКАЯ УСТАНОВКА ШАЛ – СОВРЕМЕННЫЙ СТАТУС

Общая площадь до 1990 г. – 18 км^2 , в настоящее время – 8 км^2 .

Постоянные наблюдения с 1974 г. с отключением в летние месяцы на профилактику (60 – 80 дней)

58 станций наблюдения, в которых установлены сцинтилляционные детекторы,

в 31-ой станции интегральные детекторы черенковского излучения

5(3) пунктов по 20 м^2 и один 180 м^2 для регистрации мюонов

3 комплексных станций «Обскура», включающие черенковский дифференциальный детектор, детекторы формы сигналов и систему регистрации радиоизлучения ШАЛ на частоте 32 МГц.

Станция наблюдения

- Сцинтилляционные детекторы (49х2+10)
- Черенковские дет. (32)
- Дет. мюонов S=20 м² (5)
- Большой мюонный детектор S=180 м²
 - Черенковский дифференц. детектор (3)

Якутская установка ШАЛ (S=8.2 км²)

3 станции в 2010 г. были установлены на новом месте. Площадь стала 8.2 кв. км. 500 м сетка по всей площади

Малая черенковская установка

Дифференциальный детектор черенковского излучения

Создание черенковского телескопа

 Разработан и запущен опытный образец телескопа на базе многоанодного фотоумножителя (R2486) и сферического зеркала для регистрации черенковского света ШАЛ. Получены первые данные за 2 последний сезона

Постерные доклады

- ID48 Иванов А. Широкоугольный черенковский телескоп и программа модернизации черенковских детектров Якутской установки ШАЛ
- ID46 Тимофеев Л. Наблюдение космических лучей широкоугольным черенковским телескопом, работающим на совпадение с сцинтилляционными детекторами ЯКУШАЛ

Wide FOV Cherenkov telescope

Mission: detection of the angular & temporal profile of the Cherenkov light induced by EAS at energies E>10¹⁵ eV, in order to measure the average mass composition of CRs.

ОЦЕНКА ЭНЕРГИИ И СПЕКТР КЛ

Калориметрическая формула

$$E_0 = E_i + E_{el} + E_{\mu} + E_{\mu i} + E_{\nu} + E_h$$

 E_i - энергия, рассеянная электронами ливня над уровнем наблюдения $E_i = k \cdot \Phi$

$$k = 2.16 \cdot 10^4 / (0.37 + 1.1 \cdot (Xm / 1000))$$

- Интервал длин волн 300-800nm.
- С учетом средней прозрачности
- **Е**_e/ энергия каскада ниже уровня наблюдения
- **Е**_и энергия мюонной компоненты
- $E_{\mu i}$ и E_{ν} потери мюонов на ионизацию и нейтрино E_{h} потери на ядерные реакции

Для $E_0 \cong 10^{19} \; \mathrm{eV}$: $E_i / E_0 \cong 74\%;$ $E_{\mathrm{el}} / E_0 \cong 15\%;$ $E_{\mu} / E_0 \cong 3.6\%;$ $(E_{ui} + E_v + E_h) / E_0 \cong 7.4\%$

Зависимость E_0 от $S_{600}(0^\circ)$ для $X_0 = 1020$ g cm⁻²

$$E_O = (4.6 \pm 1.2) \cdot 10^{17} \cdot S_{600}(0^{\circ})^{0.98 \pm 0.03}$$

Ревизия в 2014 (Доклад ID23 Сабуров А. Переоценка энергии ШАЛ на Якутской установке методом калориметрирования)

$$E_O = (3.6 \pm 1.0) \cdot 10^{17} \cdot S_{600}(0^{\circ})^{1.02 \pm 0.03}$$

Зенитно-угловая зависимость S₆₀₀

Изменение S_{600} соответствует поглощению двух компонент с разными пробегами:

$$S(\theta) = S(0^{\circ}) \cdot \{(1-\beta) \cdot \exp((X_0-X)/\lambda_E) + \beta \cdot \exp((X_0-X)/\lambda_M)\}$$

 $X_0 = 1020 \text{ g·cm}^{-2}, \quad X = X_0/\cos(\theta)$

 $\lambda_{E} = 250 \text{ g·cm}^{-2} -$ для электронов,

 $\lambda_{\rm M} = 2500 \ {\rm g\cdot cm^{-2}} -$ для жесткой компоненты, связанной с мюонами

 λ_E и λ_M выбирались из модельных расчетов.

 β – доля жесткой компоненты в S(0°) на глубине $X_0 = 1020 \text{ g} \cdot \text{cm}^{-2}$ определялась экспериментально

$$\beta_{600} = (0.39 \pm 0.04) \cdot S_{600}(0^{\circ})^{-(0.12 \pm 0.03)}$$

Зависимость β_{600} от $S_{600}(0^{\circ})$

Зависимость параметра S600 от глубины атмосферы X для различных энергий

Ошибки оценки энергии в ливнях

Ошибки параметров в калориметрической формуле дают систематический вклад

$$E_0 = (E_1 \pm \delta E_1) S_{600}(0^\circ)^{k \pm \delta k}$$

Относительная ошибка $\delta E_1/E_1 = 25\%$ ведет к сдвигу всей шкалы и не влияет на форму спектра $\delta k = 0.03$ несколько увеличивает систематическую ошибку с ростом энергии

Неопределенность параметров зенитно-угловой зависимости увеличивают систематическую ошибку оценки энергии для наклонных ливней

Для 3·10¹⁹ и 0≈60° систематическая ошибка оценки энергии около 30 %

Определение энергии ливня по определяемым параметрам черенковского излучения

$$E_0 = (9,12 \pm 2,28) \cdot 10^{16} \cdot (Q(150) / 10^7)^{(0,99 \pm 0,02)}$$

$$E_0 = (8,91 \pm 1,96) \cdot 10^{17} \cdot (Q(400) / 10^7)^{(1,03 \pm 0,02)}$$

Энергетический спектр Якутской установки

Энергетический спектр 3-х установок

Нормированный спектр 3-х установок

Энергетический спектр МЧУ

Сравнение спектра МЧУ с данными других установок

РЕЗУЛЬТАТЫ ПО АНИЗОТРОПИИ

Зависимость амплитуды 1-ой гармоники от E₀ ID48 Иванов А. (постер)

1-ая гармоника по данным разных установок

Two-dimensional Marr wavelet on the equatorial sphere ('Mexican Hat')

Two-dimensional wavelet amplitude as a function of energy and declination.

Two-dimensional Marr wavelet:

In an energy bin 19.0 < Log(E) < 19.5 eV the observed amplitude is significantly greater than isotropic one:

$$W^{observed} / W^{isotropic} = 2.83 \pm 0.51;$$

 $\alpha_{max} = (2.3 \pm 1.3) h;$ $\delta_{max} = 52.50 \pm 7.50$

Hotspot TA $\alpha = 9.8 \text{ h}, \delta = 43^{\circ}$

Correlation with AGNs

Другие работы по анизотропии КЛ

Глушков А.В. - основной результат (по мнению докладчика)
Для КЛ с энергией меньше 10¹⁸ эВ наблюдается корреляция с плоскостью Галактики, а для выше 10¹⁹ эВ с Суперплоскостью

Михайлов А.А. обнаружил повышенные потоки частиц с энергией выше 10^{19} эВ от отдельных пульсаров

Два главных метода:

Пространственное распределение черенковского излучения

Доля мюонов в ШАЛ

ОЦЕНКИ МАССОВОГО СОСТАВА КЛ

Зависимость средней глубины максимума развития ШАЛ от энергии, полученные на Якутской установке

Средний логарифм атомного числа космических лучей в зависимости от E₀

Cosmic Ray spectrum and composition

Precise measurement of CR spectrum and composition at 10^{17-19} eV is needed to find transition region between galactic and extragalactic CR components

CRs from Galactic SuperNova Remnants SN Ia + extragalactic CRs

Galactic CRs (from SNRs SN Ia + SN IIb) + extragalactic CRs

Сечение неупругого взаимодействия протонов с ядрами атомов воздуха $\sigma_{p\text{-}air}$ в зависимости от энергии протонов E (верхняя шкала $E_{\text{ц.м.}}$ – энергия протонов в системе центра инерции сталкивающихся частиц).

Фотоны в составе космических лучей

Предел потока фотонов рис. из P.Tinyakov/NIM A742(2014) 29–34

Доля фотонов

Отношение интенсивностей радиоизлучения ШАЛ , зарегистрированных антеннами с разной поляризацией восток-запад (I_1) и север-юг (I_2), в зависимости от геомагнитного азимута прихода ШАЛ

Подробнее о результатах по радиоизлучению в докладе Id32 Петров И....

Временные изменения к.л. с E₀≤ 10¹⁸ эВ

Изменение доли мюонов по годам (2012)

Временные вариации доли мюонов за разные периоды времени, вероятнее всего, связаны с изменением программы регистрации ШАЛ в конце 1995 г. при установке персонального компьютера. Было обнаружено, что в одной ветви этой программы для автоматической калибровки по фоновым спектрам мюонных детекторов и 9 наземных детекторов центрального сгущения использовался алгоритм, который при недостаточной производительности компьютера просчитывает события и вносит искажения в определяемые калибровочные константы и, в конечном счете, в определение зарегистрированной плотности этими детекторами, которая завышается. Степень искажения сильно зависит от производительности используемого компьютера и максимальна для периода с 1996 по 2000 гг., когда использовался компьютер недостаточной мощности. В настоящее время определяются необходимые поправки, чтобы восстановить корректные плотности.

Модернизация электроники Создание новых детекторов

РАЗВИТИЕ ЯКУТСКОЙ УСТАНОВКИ ШАЛ

Задачи модернизации

• Увеличение точности синхронизации детекторов с 100 нс до 10 нс

Значительное повышение точности (почти на порядок) определения направлений прихода частиц КЛ

• Замена низкоскоростной кабельной системы передачи данных на систему высокой пропускной способности, оснащение станций наблюдения современной электроникой

Повышение надежности и эксплуатационных характеристик установки.

• Оснащение установки новыми детекторами – Восстановление вышедших из строя и создание новых мюонных детекторов создание сети из черенковских телескопов с многоанодным ФЭУ; создание системы черенковских детекторов с измерением формы сигнала

Изучение продольного развития ШАЛ

Определение состава космических лучей

Точность определения направлений прихода частиц КЛ

Общая организация работы установки ШАЛ

Система передачи данных установки ШАЛ

На каждом детекторе измеряется амплитуда сигнала и время (точн.5 нс) Все данные потоком передаются в центр, где отбираются ливневые события – одновременное срабатывание нескольких детекторов.

Передача данных по оптическому кабелю

Электроника для станций наблюдения и мюонных детекторов

Амплитудная характеристика АЦП

Блок предварительной обработки сигнала (ПОС) с АЦП на 14 раз-дов

Основной блок электроники

Спектр фоновых событий сцинтилляционного детектора (1 кв. м)

Выполненные работы по модернизации

- Реконструированы линии связи, на которых проведен оптоволоконный кабель к всем станциям наблюдения и мюонным пунктам, завершена разработка электроника станции наблюдения (совместно с НИИЯФ МГУ).
- Подготовлены 10 станций в центральной части установки ШАЛ (изготовлена электроника и смонтирована система связи по оптоволоконному кабелю), на которых начаты работы по отладке программ регистрации и опытная регистрация

Заключение

- Расхождение по интенсивности полученных в разных экспериментах энергетических спектрах в целом можно объяснить присутствием систематических ошибок в оценках энергии ливней.
- Форма спектра КЛ и хХарактер изменения состава при энергиях выше 10¹⁷ эВ указывает на то, что переход от галактической компоненты КЛ к внегалактической происходит в области энергий 10¹⁷ ÷ 10¹⁸ эВ
- В диапазоне энергий 19.0 < Log(E) < 19.5 эВ наблюдается значимое превышение наблюдаемого потока частиц над ожидаемым для изотропного распределения из области с координатами :

 $\alpha_{max} = (2.3 \pm 1.3) h; \ \delta_{max} = 52.50 \pm 7.50$

- В результате модернизации будет повышена точность определения параметров в индивидуальных ливнях, благодаря этому для области энергий 10¹⁶÷10¹⁹ эВ:
- Будет уточнен энергетический спектр;
- Получены новые данные по анизотропии и корреляции направлений прихода ливней с источниками КЛ;
- Получена экспериментальная оценка массового состава КЛ

Совокупность данных позволит определить область перехода от галактической компоненты КЛ к внегалактической и проверить теории ускорения и распространения КЛ

Спасибо!