Установка Тунка: от космических лучей к гамма-астрономии

Л.А.Кузьмичев (НИИЯФ МГУ) От коллаборции Тунка и TAIGA

Дубна, 13 августа 2014

План доклада

- 1. Статус установки Тунка-133 и главные результаты
- 2. Планы по модернизации установки
 3. Гамма-астрономия высоких энергий в Тункинской долине

Tunka-133 array: 175 optical detectors on 3 km² area

Some important steps towards Tunka-133

- 1. 2002: G.Navarra suggested to ask for PMTs from MACRO for the new array.
- 2. 30.12 2003: 200 PMT in Moscow.
- 3 2004 : Starting R&D financial support from DFG- RFBR.
- 4. 2005: Optical cable (~ 10km) from the closed project EAS1000.
- 2006 : Starting of financial support of the project from Ministry of Education and Science. Project budget ~ 100 -150 KEU per year

Gianni("Ramon") Navarra 12/9/1945 - 24/8/2009

Karlsruhe, March 2009

Moscow, October 2005

Tunka Inaustration (September 2009)

EP.

Physics goals

1. Cosmic Rays in the energy range of 10¹⁶ - 10¹⁸ eV: Transition form Galactic CR to extragalactic. Main results: all particle energy spectrum and mass composition

2. Search for gamma-rays with energies of 5.10¹⁶ - 5.10¹⁷ eV

Primary nucleus E₀, A?

1.

2.

WDF – width distant function

ADF – amplitude distant function is used for core location

Энергетический спектр

262 ясных безлунных ночи ~ 1540 часов наблюдений с частотой триггера ~ 2 Гц ~ 10 000 000 триггерных событий

~ 12400 событий с E₀ >5·10¹⁶ eV ~ 3000 событий с E₀ >10¹⁷ eV

Спектр всех частиц (10 лет назад)

Спектр всех частиц (за 5 сезонов)

~ 3000 событий E₀ >10¹⁷ eV

Доклад В.В.Просина

Сравнение данных 3-х установок (А.Хонгс)

Спектр всех частиц

Массовый состав

1. Зависимость среднего Xmax среднего от энергии - зависимость In A

2. Распределение по Хтах - спектр отельных компонент.

Зависимость Хтах от энергии

<InA> vs. E₀

При 1 ПэВ: 17% Р, 46 % Не, 8% СОО, 16% Fe

```
Развитие установки:
```

Регистрация радио излучения от ШАЛ.

Сцинтилляцилнные станции

Tunka-REX

< □ > < 🗗 >

Connection of 2 antennas to 2 free channel of FADC

Tunka-Rex detector

- 25 antennas on 1 km² area
- Existing DAQ of Tunka-133
- Trigger and information from air-Cherenkov detector
- Radio quiet rural location
- Strong geomagnetic field (\approx 60 μ T)
- Joint operation of radio and air-Cherenkov detectors
- Goal: precision of radio reconstruction for shower parameters (energy and shower maximum)

Tunka-Rex example event

For analysis we use the radio part of the Auger Offline software¹

Correlation with amplitude (n = 2)

Grande detectors reached Tunka (July 2013)

Muon detector

Absolute energy calibration experiment. Repeating the "QUEST" at 10¹⁶ -10¹⁷ eV

Search for gamma-rays with energy 5.10¹⁶ - 5.10¹⁷ eV

Fluorescent detector

The movable support produced in JINR

Towards High Energy Gamma-Rays Astronomy array at Tunka Valley

TAIGA – Tunka Advanced Instrument for cosmic rays and Gamma and Astronomy

Array design concept

•Non imaging wide-angle optical stations (HiSCORE type)

•Net of imaging detectors with mirrors 10 m² square.

Net of muon
detectors
10² → 2 10³ m²
area.

TAIGA Collaboratipn

Germany

Russia

Hamburg University(Hamburg) DESY (Zeuthen) MPI (Munich) Humbolt University

ITALY Torino University

MSU(SINP)(Moscow) ISU (API) (Irkutsk) INR RAS(Moscow JINR (Dubna) MEPHI(Moscow) IZMIRAN Kurchatov Institute IPSM(Ulan-Ude)

Pevatron sky

Какую часть неба мы можем наблюдать

What we can see with 1 km² array (short list)

Name	RA degrees	Decl	Flux F at 1 TeV, 10 ⁻¹² cm ⁻² s ¹ TeV ⁻¹ Γ	Flux F at 35 TeV, 10 ⁻¹⁷ cm ⁻² s ⁻¹ TeV ⁻¹ (from Milagro)	Time of observation per one year (x 0.5- weater factor)
Tycho SNR (J0025+641)	6.359	64.13	0.17 ±0.05 Γ=1.95 ±0.5		236h
Crab	83.6329	22.0145	32.6 ±.9.0 Γ=2.6 ±0.3	162.6±9.4	110h,
SNR IC443 (<u>MAGIC J0616+225</u>)	94.1792	22.5300	0.58 ±0.12 Γ=3.1 ±0.30	28.8 ±9.5	112h,
Geming a MGRO C3 PSR	98.50	17.76		37.7 ±10.7	102h,
M82 (Starburst Galaxy)	148.7	69.7	0.25 ±0.12 Γ=2.5 ±0.6±0.2		325h,
<mark>Mkn 421</mark> (BL, z=0.031 Variable)	166.114	38.2088	50-200 Γ=2.0-2.6		140h
SNR 106.6+2.7 (J2229.0+6114)	337.26	61.34	1.42 ±0.33 ±0.41 Γ=2.29 ±0.33 ±0.30	70.9 ± 10.8	167h
<u>Cas A</u> (SNR, G111.7- 2.1)[6]	350.853	58.8154	1.26 ±0.18 Γ=2.61 ±0.24±0.2		177h
CTA_1(SNR,PWN)	1.5	72.8	1.3 Γ=2.3		266 h

Methodical approaches for 3 stages

- Shower front and LDF sampling technique . Angular resolution – 0.1 deg, X_{max} measurement for hadron rejection.
- 2. Using of mirrors net with cheap matrix of PMTs for imaging technique.
- 3. Using of large area muon detectors for hadron rejection.

- -Better than for Tunka angular resolution,- up to 0.1 degree -much lower energy threshold – up to 30 TeV . -Field of View (FOV) – 0.6 sr (±30 deq)
- Low cost of each station possibility to cover large area

HiSCORE – Hundred* i Square-km Cosmic Origin Explorer

Amplitude spectrum of PMTs in station

Пример события зенитный угол — 7.2° энергия - 1.0 10¹⁶ эВ

 $E = c Q(200)^{-0.94}$

Фронт ШАЛ

Спектр всех частиц

Установка 2014-2015 года – 33 станции

Все станции наклонены к Югу на 30 град

20-60 событий от Краба за 100 часов

D = 4.32m F = 4.75

34 mirrors with 60 cm diameters

Camera : 400 PMTs (XP 1911) with 15 mm useful diameter of photocathode Winston cone: 30 mm input size, 15 output size 1 single pixel = 0.36 deg full angular size 8.3 deg

DAQ - MAROC3

First telescope in autumn 2015

2000 m² muon detectors (0.2% of array area)

Scintillation detectors developed in Mephi

Заключение

1. Tunka-133 :

Пять ближайших лет будет продолжен набор данных совместно сцинтилляционными станциями и радиоантеннами. Далее будет проведена серьезная модернизация для перехода в другой интервал энергии.

- 2. Первые 9 станций HiSCORE успешно проработали первый зимний сезон. Восстановлен энергетический спектр от 200 ТэВ до 10 ПэВ На установке 2014-15 года (33 станции) мы надеемся зарегистрировать сигнал от Краба.
- 3. Первый телескоп начнет работать 2015 году.

Спасибо за внимание