Байкальский глубоководный нейтринный эксперимент

Баир Шайбонов от имени Байкальской коллаборации РККЛ2014, 12.08.2014

Содержание

- Краткое введение
 - Нейтрино высоких энергий в астрономии и астрофизике
 - Детектирование нейтрино высоких энергий
 - Новый этап в нейтринной астрономии высоких энергий: результаты эксперимента IceCube
- Озеро Байкал, как благоприятное место для исследований
- От телескопа HT-200 к телескопу HT-1000 следующего поколения
 - Техническая часть: ФЭУ, триггерная система, система сбора данных
 - Калибровка, восстановление событий
- Заключение

Природные потоки нейтрино

Нейтрино высоких энергий в астрономии и астрофизике

Почему нейтрино?

 $\begin{array}{l} p+p \ \rightarrow \pi^{\pm} \ldots \rightarrow \nu \\ p+\gamma \ \rightarrow \pi^{\pm} \ldots \rightarrow \nu \end{array}$

- Регистрация нейтрино от космического объекта свидетельство ускорения в нем космических лучей
- Нейтрино может проникать через толщи вещества вокруг источника, через которые другие частицы проникать не могут → внутреннее строение

Предполагаемые источники нейтрино:

- Галактические источники:
 - Центр Галактики
 - Остатки сверхновых
 - Двойные системы
 - Пульсары
 - Молекулярные облака
- Внегалактические источники:
 - Активные ядра галактик
 - Гамма всплески
- Аннигиляция WIMP
- Космологические нейтрино БЗ

Принцип детектирования нейтрино

М.А.Марков, ІСНЕР196

Мюоны от нейтрино:

- Длинный трек в установке
- ФЭУ срабатывает < 20 м от трека (200 фотонов на см)
- Субградусная точность восстановления направления трека
- Невысокая точность восстановления энергии
- Вершина взаимодествия нейтрино может нахопиться в нескольких км от Ливни от нейтрино:
- Во всех остальных 5 реакциях рождаются ливни без мюона
- Квазиточечный анизотропный источник света в установке
- ФЭУ срабатывает в 100 м от 100 ТэВ ливня (I $\approx 10^8 * E(T_3B)$ фотонов)
- Относительно невысокая точность восстановления направления ливня (3°- 6°)
- Относительно высокая точность восстановления энергии

Выделение космических нейтрино на фоне атмосферных мюонов и нейтрино

- По направлению прихода нейтрино с определенного участка небесной сферы из-под горизонта
- По превышению числа событий в высокоэнергичной части спектра зарегистрированных нейтрино над ожидаемым числом событий от атмосферных мюонов и нейтрино (атм. поток v_e примерно в 20-50 раз меньше атм. потока v_µ)

Карта неба: Байкал НТ-200 (1998-2002)

Многофункциональный эксперимент

- Нейтринная астрофизика высоких энергий
- Непрямой поиск темной материи
- Нейтринная физика (плотная установка):
 - изучение осцилляций в потоках ускорительных и атмосферных нейтрино (эффект осцилляций нейтрино в веществе, иерархия масс нейтрино)
- Нейтринная астрофизика низких энергий:
 - нейтрино от вспышек сверхновых
- Поиск гипотетических частиц: магнитные монополи итд
- Геофизика: нейтринная томография Земли (~10 км3)
- Лимнология, экология

Эксперименты

Прорыв: результаты IceCube

Южный полюс Геом. объем 1 км³

Ливни

420 Мт эфф. объема 37 соб. за 3 года (28 ливней, 9 ливней + мюон) 30 ТэВ < E < 2 ПэВ

Фон:

- 9 8.4 <u>+</u> 4.2 атм. µ
- ^{+5.9}_{-1.6}6.6 атм. v

 $E^2 \Phi = 0.95 \pm 0.30 * 10^{-8}$ ГэВ с⁻¹ стер⁻¹ см⁻² - На один аромат нейтрино

[•] атм. ν

Байкальский нейтринный эксперимент

Байкальская коллаборация

55 физиков и инженеров

- Институт ядерных исследований РАН, Москва
- Объединенный институт ядерных исследований, Дубна
- Иркутский государственный университет, Иркутск
- Институт ядерной физики им. Скобельцына, Москва
- Нижегородский гос. техничекий университет, Н.Новгород
- С-Петербургский гос. морской университет, С.Петербург
- Курчатовский институт, Москва
- EvoLogics GmbH, Berlin

Место проведения эксперимента

- Глубина 1366 м на небольшом расстоянии от берега (3.6 км)
 - Развитая инфраструктура (ж/д, ЛЭП)
- Пресная вода (простота механических решений, нет фонового свечения от К40)
- Нет биолюминесценции, носящей вспышечный характер
- Прочный ледовый покров в течение 2

События из-под горизонта

Оптические свойства воды

Развертывание установки

Прокладка донного кабеля

Развертывание телескопа

Телескоп НТ200

НТ200: Результаты

- Возможность проведения такого рода эксперимента, первые нейтрино, полученные методом глубоководного детектирования
- Атмосферные нейтрино ~ 400 соб.
- Поиск локальных источников нейтрино
- Поиск диффузного потока нейтри ЕФ < 1.0 х 10-7 ГэВ-1 см-2 стер-1
- Поиск нейтрино, скоррелированных с гамма вспышками
- Поиск нейтрино от темной материи
 - по направлению на Центр Земли
 - по направлению на Солнце
- Поиск релятивистских магнитных монополей

20 ТэВ < Е < 20 ПэВ

Оптический модуль

Оптический модуль состоит из:

- 10" ФЭУ Hamamatsu R7081HQE, Qeff~0.35
- 17" стеклосфера VITROVEX
- 5-штырьковый глубоководный разъем Subconn
- 2-канальный усилитель, контроллер, блок высокого напряжения
- 2 калибровочных светодиода: 108 ф.э.., 430 нм, 5 нс
- Металлическая сетка
- Гель
- **Управление:** RS485 (мониторинг темпов счета ФЭУ, значения высокого напряжения, температуры)
- Потребление: max 0.3A x 12B
- Калибровка задержки прохождения сигнала в ФЭУ (разность между тестовым и светодиодным импульсами)

Функциональная схема электроники ОМ

Байкальский телескоп НТ-1000

- Разработка завершена
- Конфигурация телескопа, оптимизированная для регистрации как мюонов, так и ливней:
 - 12 автономных телескопа (кластера) на 300 м друг от друга
 - Каждый кластер состоит из:
 - 8 гирлянд (1 центральная и 7 периферийных на окружности радиусом 60 м)
 - донный береговой оптоэлектрический кабель (на 1 или на 2 кластера)
 - Длина гирлянды 350 м (24 ОМ на расстоянии 15 м друг от друга)
 - Всего 2304 ОМ

Характеристики НТ-1000

оф. объем для ливней с E > 100 ТэВ: 0.1 - 0. Өкфир. площадь для мюонов E>10 TeV: 0.2 - 0.6

Угловое разрешение для ливней: 3.5 - 5.5°

Угловое разрешение для мюонов: 0.25°

Характеристика одного кластера

Эфф. площадь регистрации нейтрино (мюоны)

Подавление фона атмосферных мюонов уменьшает площадь на ~30-40% Угловое разрешение (медианное) ~1-1.50 (не зависит от энергии для Еµ> 1 TeV)

Характеристика одного кластера

Фон для ливней

- Основной фон атмосферные мюоны
- Набор МК:
 - 2*108 триггерных событий
 - ~23 дня набора данных
 - Ни одного события с Nhit>20

• МК в процессе..

Угловое разрешение для ливней

IceCube

Кластер **Cumulative probability** 0.8 E_{sh}=100TeV 0.60.4 0.2 **Demonstration Cluster** 20 25 30 35 5 10 15 40 Mismatch angle, degree

Угловое разрешение < Ψ > :

IceCube - 10°-15°

GVD-Cluster - 4°

→ дополнитеный фактор <Ψ>² в задаче поиска локальных источников нейтрино

техническая часть

Гирлянда ОМ

- Центральный модуль (ЦМ) и подключенные к нему 12 ОМ образуют секцию
- Каждая гирлянда может состоять из нескольких секций, акустических модулей, а также дополнительного оборудования
- ЦМ состоит из:
 - 3 FADC платы (ПЛИС Xilinx Spartan 6, 12 каналов, 200 MHz, 12бит, двойная буферизация, мониторинг т.сч. запросов)
 - Мастерная плата (ПЛИС Xilinx Spartan 6):
 - триггерная система секции (основное триггерное условие: срабатывание 2 соседних ОМ по высокому (3 ф.э.) и низкому (0.3 ф.э.) порогам во временном окне 90 нс). Срабатывание – превышение порога в 4 соседних отсчетах FADC
 - онлайн обработка данных (выделение импульсов с ФЭУ -> уменьшение потока передаваемых данных в 20 раз)
 - коммуникация с Центральным модулем кластера (линия 1.2 км, DSL модемы MOXA IEX-402-SHDSL)
 - Буфер на 1000 событий
 - Событие: Формы импульсов с 12 каналов, лок. время (10нс), значения счетчиков запросов и подтверждений
- Плата медленной связи и питания ОМ

Центр кластера

- обеспечивает совместную работу 8 гирлянд
- состоит из 3 стеклосфер и оптонаконечника, расположенных на 30 м под поверхностью:
 - 2 FADC и мастерная платы -> триггерная логика кластера (совпадения нескольких гирлянд в окне 500 нс), общий на все секции сигнал подтверждения
 - электропитание, управляемый коммутатор питания
 - 8 DSL-модемов для передачи данных с секций
 - связь с берегом по оптоволоконной линии

OLE	

Текущее состояние

Кластер 2014

- 112 ОМ на 5 гирляндах
 - 9 секций по 12 ОМ
 - 1 секция с 4 ОМ
- Акустическая система позиционирования (3 модуля на гирлянде, измерение каждые 30 сек, точность < 1 см), калибровочная матрица светодиодов
- Инструментальная гирлянда:
 - калибровочный лазерный изотропный источник света
 - 8 ФЭУ на глубинах 600 - 900 м для изучения фоновых условий

Надежность аппаратуры

с апреля 2011 по июнь 2014 (без длительных лабораторных и стресс

• Оптически е Ф Ф В Э ли:

- 3 ОМ из 140 вышли из строя
- 1 ОМ: контроллер ОМ
- 2 ОМ: нет соединения по шине RS485. Возможная причина плата медленной связи (будет модернизирована в 2014 году)

Кабельные коммуникации:

 2 кабеля вышли из строя. Причина – старая технология заливки разъемов (кабели 2011 года). Новая технология с 2012 года.

• Сетевые устройства:

- индустриальные устройства (свитчи, Ethernet-RS485 конвертеры, IEX-402 DSL-модемы MOXA)
- – без ошибок
- неиндустриальные DSL-модемы:
- ненадежное соединение с 1 гирляндой в 2013 году и 1 секцией в 2014 году
- в планах перейти полностью на MOXA IEX-402 shDSL
- FADC и мастерные платы
 - без ошибок
- Стеклосферы и глубоководные разъемы
 - без ошибок
- Устройства электропитания (300 VDC коммутаторы, DC/DC конвертеры)

Набор данных

Time [day/month]

Временная калибровка

- Подсчет полной задержки в канале:
 - Tled Ttest = ΤΦЭΥ
 - Ткабель
 - TFADC (ненулевая в Spartan3)
- Сравнение задержек в светодиодных сеансах
- Учет зависимости временной отметки T1/2 от амплитуды A > 50 ф.э.

Атмосферные мюоны

Восстановление мюонов

- Проверка системы измерения времени, триггерной системы
- Надежность калибровочных методов
- Эффективность подавления шумов
- Проверка МК моделирования

Процедура подавления шумов:

разность времен между импульсами на разных каналах должна быть меньше времени прохождения света между этими каналами

$$|\bigtriangleup t_{ij}| < (r_{ij} n_g)/c + \delta,$$

Простейший метод восстановления трека мюона

 $^{2} = \sum_{i=0}^{Nhit} (T_{i}(\theta, x, y) - t_{i})^{2} / \sigma_{t_{i}}^{2}$

Распределение по зенитному углу экспериментальных и МК событий после отбора по значению χ2

Восстановление положения и интенсивности лазерного ис____

Лазерный источник света (480 нм): 4 фикс. интенсивности: ~1012 – 6×1013 ү/импульс ~10 ПэВ – 200 ПэВ энергии ливня Расстояния от лазера до ОМ: 130 – 250 м. Точность восстановления координат 3.2

Μ

Точность восстановления интенсивности

Обработка данных

Алгоритмы:

- Чтение экспериментальных данных (поддержка различных версий форматов)
- Выделение импульсов на оцифрованных развертках с ФЭУ, определение их характеристик: A, Q, Ped, T1/2, TOT, FWHM
- Объединение событий с секций в общее событие кластера: по локальным временам секций, учет разбегания таймеров
- Проверка работы триггерной системы: оффлайн восстановление триггерного условия, определение окна совпадений
- Автоматический контроль работы оборудования по анализу данных (alarm система)
- Временная и амплитудная калибровки: относительные задержки между каналами, коэффициенты FADC коды – ф.э.
- Учет изменяющихся во времени параметров: геометрия установки, калибровочные значения
- Подавление шумов: принцип причинности
- Восстановление событий
- Сравнение с МК данными

по шумам и по светодиодам

Обнаружено несколько десятков ошибок на ранних стадиях формирования данных (программа сбора данных, прошивки мастерных плат)

Комплексный подход к обработке данных

- Единый программный пакет BARS (Baikal Analysis and Reconstruction Software)
 - реализуется в стиле ООП на С++, основан на ROOT
 - стандартизует взаимодействие алгоритмов друг с другом (интерфейс алгоритмов)
 - алгоритмы практически независимы друг от друга -> высокая гибкость программ -> адаптация алгоритмов для новых задач
 - способствует автоматизации процедур обработки

histogram after cuts

Временная шкала

Совокупное число кластеров и зарегистрированных событий

Year	201 5	2016	2017	2018	2019	2020
Baseline	1	1	3	5	7	10
Events	1	2	5	10	17	27
Compresse d baseline	1	2	4	7	10	
Events	1	3	7	14	24	

1 кластер = 8 гирлянд = 192 канала = 1 событие от косм. v (E > 100TeV, ливень) в год

Стоимость первого кластера ("Дубна"): ~ 2.2 М€

Заключение

- Технический дизайн НТ-1000 завершен
- З года испытаний в натурных условиях экспериментальных установок показали, в целом, надежную работу элементов телескопа
- Ближайшие планы:
 - доведение «до ума» электронных элементов, прошивок, программ сбора данных, программ обработки данных
 - запуск полномасштабного демонстрационного кластера в 2015 году, набор физически значимых экспериментальных данных
 - подготовка к массовому производству комплектующих

BACK-UPS

High Energy Starting Events ("HESE")

Data: 79- and 86-strings (2010-2013, 988 days) Accepted by Phys. Rev. Lett.; arXiv:1405.5303

Optical module (OM)

Glass pressure-resistant sphere VITROVEX (17") OM electronics: amplifier, HV DC-DC, controller 2 on-board LED flashers: 1...108 pe., 430 nm, 5 ns Mu-metal cage **PMT R7081HQE :** *D***=10", ~0.35QE** Elastic gel

Angular sensitivity

Master

Request analyzer

Programmable coincidence matrix

(12L×12H inputs).

Two basic trigger modes:

L>N : > N OMs in the section

L&H: any pairs of neighbouring OMs with low (0.3pe) and high (3pe) thresholds **Event buffer** (1000 events)

Event: waveform data for 12 ADCs,

global trigger number, local time.

On-line data processing unit:

The separation time intervals from waveform stamp, that containes PMT pulses.

Master block-diagram (FPGA Xilinx Spartan 6)

Control module: Connection to Slow control board via RS-485 bus.

Slow control board

Rate [kHz]

Channel noises monitoring, 2014

OM power on/off, control of OM mode of operation, monitoring of OM parameters.

Single photoelectron spectrum measured with LED (black) and noise spectrum (red)

Power

String power consumption: 0.45A SUP Suster (8 strings) ~1.2 KW×1.5

300 VDC power supply system.

(1.2 KV power supply will be tested at 2015 for the second cluster).

Basic elements of power system electronics:

- 300 VDC commutators (up to 12 channels)

- DC/DC converters 300 \rightarrow 5, 12, 24 V (Traco Power)

Power commutator was specially designed for Baikal at 2011.

- Switching on/off via Ethernet by COM-server and digital output module;
- Monitoring of output voltage;

Three-level power supply system:

1-st. Cluster center level (300V). Switching on/off string power supply.

2-nd. String level (300V). Switching on/off section power (independently ADC and OM).

3-rd. Section level (12V). Switching on/off OM power.

Underwater

25 year successful Cooperation with "Pskovgeokabel" factory ! All underwater cables were specially designed for Baikal.

www.pskovgeokabel.ru

4 basic types of cables:

- Optical modules; Acoustic modules;
- String and section; Cluster (shore cable)

Connectors: SubConn Low Profile

5 contacts (OM) and 9 contacts (String)

- $600 \text{ V} \times 6\text{A}$ per contact.
- Eternet 100 Mbit.

Acoustic modules

Twisted pair (120 OM, 0.5 mm2) 9 isolated copper wires 0.15 mm2

String, Section

2 Coaxial cables (50 OM, 0.5 mm2) Twisted Pair (120 OM, 0.5 mm2) TP screen 90×0.1 mm 3 isolated copper wires 0.5 mm2 Optical modules

Coaxial cable (50 OM, 0.5 mm2) 9 isolated copper wires 0.15 mm2 Shore cable

3 fiber modules (2 single-mode fibers, copper sheath 1.8 mm2) 3 isolated copper wires 0.75 mm2

Cluster underwater

100...200 Hz data event rate are expected for the basic trigger L×H.

Segments of underwater network:

- 1. Section (Master) String module
- 2. String module Cluster DAQ center
- 4. Cluster DAQ center Optical box
- 5. Optical box Shore DAQ center

Segment	Length	Data rate	Line speed	Technique
1	100300 m	1 Mbit	~10 Mbit	shDSL
2	~1000 m	3 Mbit	~10 Mbit	shDSL
3	3 m	25 Mbit	100 Mbit	100 BaseTX
4	~6000 m	25 Mbit	1000 Mbit	1000 BaseFX

Critical elements: on-line data processor (PMT pulse selection from waveform data)

Master board provides ~70 Hz data processing rate at software level (processor on the basis of FPGA). The using hardware FPGA level for data processing will increase processing speed to about 4...5 times (2014-2015).

The nearest Plans

2014

R&D for the first cluster:

New firmware for on-line data processing in the Master (FPGA "hardware" level).

- Modernization RS485 output of the slow control board.
- **R&D** for the array of the clusters:
- 1 kV power supply (pilot samples are testing now);
- cluster time synchronization unit (the in-situ tests at 2015);

Preparation all necessary elements for the 3 additional strings of the first cluster.

2015 . Full scale cluster (8 strings) in Baikal Lake.

2014 – 2016. The organization of Mass production

- Storage space (INR, Dubna, Irkutsk and Baikalsk)
- Additional manpower
- Laboratory rooms and stands
- Long time laboratory tests of electronics, stress tests.

Сравнение экспериментов

Характеристики	Байкал (2015)	Antares (2008)	IceCube (2011)
№ гирлянд	8 (350)	12 (350)	86 (1000)
№ изм. каналов	192	300	5160
ОМ	R7081HQE	R7081	R7081
Поглощение света, м	22	41	50-100
Рассеяние, м	45-65	220	1-5
Свечение среды	Низкое	Сверхвысокое	Сверхнизкое
Агрессивность среды	нет	да	нет
Удаление от берега, км	3.6	40	-
Однородность среды	Однородное, меняется во времени	Однородное, меняется во времени	Неоднородное, не меняется во времени
Простота развертывания	да	нет	нет
Пригодность к ремонту, изменению конфигурации	высокая	низкая	не пригодно
Простота обработки и анализа данных	да	да	нет
Обзор Галактики	18 ч / сутки	15 ч / сутки	0ч/сутки