ЭНЕРГЕТИЧЕСКИЙ СПЕКТР И МАССОВЫЙ СОСТАВ КОСМИЧЕСКИХ ЛЧЕЙ ПО ДАННЫМ УСТАНОВКИ ТУНКА-133

В.В. Просин (НИИЯФ МГУ) От имени коллабораций Тунка и TAIGA

175 оптических детекторов EMI 9350 и HAMAMATSU Ø 20 cm

Запись импульса (шаг = 5 нс): Фитирование специальной функцией и измерение параметров: Q=c·S_{pulse}, A_{max}, t_i , т_{eff}=S/A/1.24

CORSIKA: Функции – ФПР и ФАР

b_Δ

ФАР: A(R) = A(400)·((R/400+1)/2)^{-bA} крутизна: b_A

ФПР: Q(R) = Q(300)·((R/300+1)/2)-bQ крутизна: bo

CORSIKA: Пересчет от Q_{200} к E_0

Абсолютная калибровка: нормировка интегрального энергетического спектра за каждую ночь на эталонный спектр, полученный в эксперименте QUEST (Черенковские детекторы на EAS-TOP)

Эффективные площади

Экспериментальные оценки точности основных параметров ШАЛ

Сравнение параметров одних и тех же ливней по измерениям различными установками.

HiSCORE 9 оптических станций

1. Сравнение результатов установок Тунка-133 и HiSCORE.

> для E₀ > 3·10¹⁵ эВ: Разница направлений прихода Δψ < 0.5° Разница координат оси ШАЛ ΔX < 8 м, ΔY < 8 м

Экспериментальные оценки точности основных параметров ШАЛ

- 2. Разделение установки Тунка-133 на 2 под-установки:
 - а) нечетные детекторы
 - б) четные детекторы -

сравнение результатов обработки двух под-установок:

M:	Е0>10^16 эВ:	Расстояние между осями ШАЛ	ΔR<8 м	
		Разница	ΔlgE0<0.033	(8%)
	E0>3·10^16	Расстояние между осями ШАЛ	ΔR<6 м	
		Разница	∆lgE0<0.017	(4%)
L:	E0>3·10^16 эВ	Расстояние между осями ШАЛ	∆R<13 м	
		Разница	∆lgE0<0.051	(12%)

Накопление данных.

5 зимних сезонов: 2009-2010, 2010-2011, 2011-2012, 2012-2013, 2013-2014 262 ясных безлунных ночи ~ 1540 часов наблюдений с частотой триггера ~ 2 Гц ~ 10 000 000 триггерных событий Отбор событий: $\theta \leq 45^{\circ}$ R_{core} < 450 м: ~ 270 000 events with $E_0 > 6.10^{15} \text{ eV} - 100\%$ efficiency ~ 99 000 events $E_0 > 10^{16} \text{ eV}$ ~ 4000 событий с E₀ >5·10¹⁶ eV ~ 983 events $E_0 > 10^{17} \text{ eV}$ $R_{core} < 800 \text{ m}$:

~ 12400 событий с E₀ >5·10¹⁶ eV ~ 3000 events E₀ >10¹⁷ eV

Построение комбинированного спектра

Комбинированный дифференциальный первичный энергетический спектр

Энергетический спектр: Упрощенная трактовка

Assuming the similar spectra of all the components terminated at the energy $E_t = Z \cdot 3 \cdot 10^{15}$ eV one can estimate the composition at the knee energy:

Fe – 12%

Unknown – 21% Conclusion:

1. He dominates in the knee.

2. Unknown component can not be extragalactic or it's spectrum is different.

3. **Fe** domination is not close to 100% at $8 \cdot 10^{16}$ eV.

Энергетический спектр: фитирование степенными функциями

One can see two sharp features at the energies:

~2·10¹⁶ (first announced by KASCADE-Grande in 2010)

and $\sim 3.10^{17}$ (similar to that, announced by Yakutsk and Fly's Eye in 90th)

The power law index at $E_0 > 10^{17}$ is similar to that obtained by the Giant Experiments: TA, HiRes, Auger.

Энергетический спектр: сравнение с другими работами

Согласие с KASCADE-Grande Согласие со старой работой Fly's Eye и HiRes и TA.

В этой же области: ГАММА Ice-TOP ТА по черенковскому свету

Массовый состав: Два метода определения Х_{тах}:

При обработке – требование разницы в Х_{тах} по двум методам ≤ 25 г·см⁻²

Длительность импульсов на расстоянии 400 м от оси ШАЛ: **т**_{eff}(400)

CORSIKA

(Корреляции не зависят ни от модели, ни от энергии, ни от зенитного угла)

 $< X_{max} > vs. E_0$

Agreement with HiRes-MIA and Auger results at 10¹⁷ – 10¹⁸ eV

EXPERIMENT: MEAN < InA> vs. E₀

EXPERIMENT: MEAN <InA> vs. E₀

ANALYSIS of X_{max} DISTRIBUTIONS (2013)PRELIMINARY

Fit with weighted sum of 4 group MC simulated distributions: Fe, CNO, He, p

Спектры легкой (р+Не) и тяжелой (все остальные) компонент КЛ (2013)

выводы

Спектр в диапазоне 5·10¹⁵ to 10¹⁸ эВ не описывается единым степенным законом:
γ = 3.26 ±0.01
5·10¹⁵ < E₀ < 2·10¹⁶ эВ.

- $\gamma = 2.98 \pm 0.01$
- $\gamma = 3.35 \pm 0.11$

 $5 \cdot 10^{15} < E_0 < 2 \cdot 10^{16}$ 3B. $2 \cdot 10^{16} < E_0 < 3 \cdot 10^{17}$ 3B. $E_0 > 3 \cdot 10^{17}$ 3B.

- 2. Согласие с KASCADE-Grande.
- 3. На предельно больших энергиях наилучшее согласие со спектрами Fly's Eye, HiRes и TA.
- 4. Глубина максимума Х_{тах} не противоречит результатам, полученным по флюоресцентному свету: HiRes-MIA и Auger.
- 5. Состав утяжеляется от 10¹⁶ до 3·10¹⁶ эВ и вновь облегчается в диапазоне 10¹⁷ 10¹⁸ эВ.

Thank you!

PHENOMENOLOGICAL APPROACH: $\tau_{eff}(400)$ vs. inverse zenith angle $E_0 = 3 \cdot 10^{16} \text{ eV}$

~3600 events: $16.4 < \log_{10}(E_0/eV) < 16.5$

PHENOMENOLOGY: ΔX_{max} by $\tau_{eff}(400)$

Consistency of phenomenological and CORSIKA simulated correlations

PHENOMENOLOGICAL APPROACH: ADF steepness vs. zenith angle $E_0 = 3 \cdot 10^{16} \text{ eV}$

~3600 events: $16.4 < \log_{10}(E_0/eV) < 16.5$

PHENOMENOLOGY: X_{max} by the ADF steepness

The experimental dependence deviates slightly from the simulated one. This can happen because of the more complicated character of the parameter $\mathbf{b}_{\mathbf{A}}$.

История экспериментов в Тункинской долине

- 1. 1992 4 ФЭУ КВАЗАР-370 на льду Байкала.
- 2. 1993 1995 Тунка-4 4 ФЭУ КВАЗАР-370 в Тункинской долине.
- 3. 1995 ICRC в Риме. Старт первой международной коллаборации с участием Gianni Navarra и А.М. Hillas.
- 4. 1996 1999 Тунка-13 13 ФЭУ КВАЗАР-370
- 5. 1998 2000 QUEST (5 PMTs QUASAR-370 at EAS-TOP in LNGS).
- 6. 2000 2003 Тунка-25, S = 0.1 км² в Тункинской долине.
- 7. 2004 2009 Тунка-133 133 ФЭУ из бывшего эксперимента МАСКО в Гран Сассо (идея Gianni Navarra), S = 0.7 км².
- 2011 Расширение установки Тунка-133 175 ФЭУ, 6 внешних кластеров, S = 2.5 km².

EXPERIMENT: MEAN <InA> vs. E₀

