Переоценка энергии широких атмосферных ливней на Якутской установке методом калориметрирования

А.В. Глушков, М.И. Правдин, А. Сабуров*

Институт космофизических исследований и аэрономии им. Ю.Г. Шафера СО РАН

33-я Всероссийская конференция по космическим лучам

2 Пространственное распределение сигнала детекторов

3 Калориметрический метод

Обсуждение полученных результатов

Мотивация

E

Якутск (1978), Глушков (1982):

E

Якутск (1978), Глушков (1982):

$$\begin{aligned}
\mathbf{f}_{0} &= (4.1 \pm 1.4) \times 10^{17} \cdot (\rho_{s,600}(0^{\circ}))^{0.97 \pm 0.04} \,(\mathbf{\Im B}), \quad (1) \\
\rho_{s,600}(0^{\circ}) &= \rho_{s,600}(\theta) \times \exp\left(\frac{(\sec \theta - 1) \cdot x_{0}}{\lambda_{\rho}}\right), \quad (2) \\
\lambda_{\rho} &= 400 \pm 45 \quad (\Gamma/CM^{2}), \quad (3)
\end{aligned}$$

Якутск (1991, 1993, 2003)

E

$$E_0 = (4.8 \pm 1.6) \times 10^{17} \cdot (\rho_{5,600}(0^\circ))^{1.0 \pm 0.02},$$
(4)
$$\lambda_\rho = (450 \pm 44) + (32 \pm 15) \cdot \log_{10} \rho_{5,600}(0^\circ).$$
(5)

Глушков, Сабуров (ИКФИА)

E

Спектр КЛ с $E \ge 10^{17}$ эВ

E

・ロト ・聞 ト ・ ヨト ・ ヨト

Пространственное распределение сигнала детекторов

Глушков, Сабуров (ИКФИА)

・ロト・日本・モン・モント

энерговыделение в детекторе $\Delta E_s(R)$:

$$ho_{s}(R)=rac{\Delta E_{s}(R)}{E_{1}}$$
 (M $^{-2}$), (6

*E*₁ = 11.75 МэВ (единица отклика).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

E

CORSIKA (v. 6.7370): QGSJet01d, QGSJet-II-04, SIBYLL-2.1, EPOS-LHC + FLUKA

 $E_0 \in [10^{17} - 10^{19.5}]$ с шагом $\Delta \log_{10} E_0 = 0.5$ (по 500 ливней для каждого набора входных параметров).

thin sampling: $\epsilon_{\text{thin}} = 3.16 \cdot 10^{-6} - 10^{-5}$, $w_{\text{max}} = 10^4 - 3.16 \cdot 10^6$.

イロト (部) (注) (す) ()

основные физические процессы:

・ロト ・部ト ・ヨト ・ヨト

основные физические процессы:

- e^{+/-}:
 - ионизация
 - bremsstrahlung

・ロト ・部ト ・ヨト ・ヨト

основные физические процессы:

- e^{+/-}:
 - ионизация
 - bremsstrahlung
- $\mu^{+/-}$:
 - ионизация

イロト イポト イヨト 一日

основные физические процессы:

- $e^{+/-}$:
 - ионизация
 - bremsstrahlung
- $\mu^{+/-}$:
 - ионизация

•
$$\gamma$$
:
• $\gamma \rightarrow e^+ + e^-$
• $\delta e^{+/-}$

イロト イポト イヨト 一日

Оценка отклика в наземных детекторах

E

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Оценка отклика в наземных детекторах

 $u_m(\epsilon, \theta) \rightarrow \text{CORSIKA} \rightarrow d_m(\epsilon, R, \theta)$ для интервалов ($\log_{10} R_j, \log_{10} R_j + 0.04$). Сигнал (6) на расстоянии *R*:

E

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

 $u_m(\epsilon, \theta) \rightarrow \text{CORSIKA} \rightarrow d_m(\epsilon, R, \theta)$ для интервалов ($\log_{10} R_j, \log_{10} R_j + 0.04$). Сигнал (6) на расстоянии *R*:

$$\rho_{s}(R) = \sum_{m}^{3} \sum_{i=1}^{l_{m}} u_{m}(\epsilon_{i}, \theta_{i}) d_{m}(\epsilon_{i}, R, \theta_{i}), \qquad (7)$$

・ロト ・部ト ・ヨト ・ヨト

I_m — число частиц типа *m* на расстоянии *R*.

E

QGSJet01d (вертикальные ливни):

$$E_0 = (3.24 \pm 0.1) \times 10^{17} \cdot (\rho_{s,600}(0^\circ))^{1.015},$$

Глушков, Сабуров (ИКФИА)

୬୯୯ 10/24

E

・ロト ・部ト ・ヨト ・ヨト

(8)

QGSJet-II-04, SIBYLL-2.1, EPOS-LHC:

$$E_{0} = (3.52 \pm 0.1) \times 10^{17} \cdot (\rho_{s,600}(0^{\circ}))^{1.02},$$
(9)

$$E_{0} = (3.09 \pm 0.1) \times 10^{17} \cdot (\rho_{s,600}(0^{\circ}))^{1.015},$$
(10)

$$E_{0} = (3.74 \pm 0.1) \times 10^{17} \cdot (\rho_{s,600}(0^{\circ}))^{1.02},$$
(11)

E

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶

QGSJet-II-04, SIBYLL-2.1, EPOS-LHC:

$$E_{0} = (3.52 \pm 0.1) \times 10^{17} \cdot (\rho_{5,600}(0^{\circ}))^{1.02},$$

$$E_{0} = (3.09 \pm 0.1) \times 10^{17} \cdot (\rho_{5,600}(0^{\circ}))^{1.015},$$

$$E_{0} = (3.74 \pm 0.1) \times 10^{17} \cdot (\rho_{5,600}(0^{\circ}))^{1.02},$$
(11)

Усредненная по всем моделям оценка:

$$E_0 = (3.40 \pm 0.18)^{17} \cdot (\rho_{s,600}(0^\circ))^{1.017},$$
(12)

что ниже оценки (1) в 1.20 раза и ниже (4) в 1.41 раз.

Глушков, Сабуров (ИКФИА)

・ロト・日本・ キョン・

Линейная зависимость:

$$\lambda_{
ho} = 415 \pm 15 \, \text{г/сm}^2$$

$$\sec \theta < \sec \theta_{\lim} = a + b \log \rho_{s,600}(\theta),$$

Глушков, Сабуров (ИКФИА)

Переоценка энергии...

E

Калориметрический метод

E

Энергия, рассеянная э/м компонентой в атмосфере:

$$E_i = E_\gamma + E_{\text{ion.}}$$

$$E_i = k \cdot F_i$$

F— полный поток черенковского света, *k*— масштабный коэффициент.

Энергия, рассеянная э/м компонентой в атмосфере:

$$E_i = E_\gamma + E_{\text{ion.}}$$

$$E_i = k \cdot F_i$$

F— полный поток черенковского света, *k*— масштабный коэффициент.

Масштабный коэффициент k:

$$k = k_{\gamma} + k_{\text{ion.}} = rac{E_{\gamma} + E_{\text{ion.}}}{F}$$

Глушков, Сабуров (ИКФИА)

・ロト ・聞 ト ・ ヨ ト ・

Зависимость масштабного коэффициента k от расстояния между x_{max} и

*х*орь. для протонов и ядер железа:

E

・ロト ・部ト ・ヨト ・ヨト

Зависимость масштабного коэффициента *k* от расстояния между *x*_{max} и

*x*_{obs.} для протонов и ядер железа:

E

*ロト *部ト * ヨト * ヨト

Энергия, проносимая $e^{+/-}$ к уровню наблюдения:

$$\begin{split} E_{\text{eL}} &= \int_{x_{\text{obs.}}}^{\infty} \left(\frac{\text{d}E}{\text{d}x}\right)_{\text{ion.}} \cdot N_{\text{e}}(x) \text{d}x \simeq \\ &\simeq 2.2 \times 10^6 \cdot N_{\text{e}}(x_{\text{obs.}}) \times \\ &\int_{x_{\text{obs.}}}^{\infty} \exp\left(\frac{x_{\text{obs.}} - x}{\langle \lambda_N \rangle}\right) \text{d}x \\ &\langle \lambda_N \rangle \simeq 240 \text{ r/cm}^2. \end{split}$$

୬ < ୍ 16 / 24

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ ─臣

Энергия, проносимая $e^{+/-}$ к уровню наблюдения:

$$\begin{aligned} \mathsf{E}_{\mathsf{eL}} &= \int_{x_{\mathsf{obs.}}}^{\infty} \left(\frac{\mathsf{d}\mathcal{E}}{\mathsf{d}x}\right)_{\mathsf{ion.}} \cdot N_{\mathcal{e}}(x) \mathsf{d}x \simeq \\ &\simeq 2.2 \times 10^6 \cdot N_{\mathcal{e}}(x_{\mathsf{obs.}}) \times \\ &\int_{x_{\mathsf{obs.}}}^{\infty} \exp\left(\frac{x_{\mathsf{obs.}} - x}{\langle \lambda_N \rangle}\right) \mathsf{d}x \\ &\qquad \langle \lambda_N \rangle \simeq 240 \, \mathsf{r/cm}^2. \end{aligned}$$

Число электронов на уровне наблюдения:

$$N_e(x_{obs.}) \simeq \langle N_s(x_{obs.}) \rangle - 1.8 \cdot \langle N_\mu(x_{obs.}) \rangle.$$

Глушков, Сабуров (ИКФИА)

୬ < ୯ 16/24

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト … 臣

Энергия, проносимая $e^{+/-}$ к уровню наблюдения:

$$\begin{split} \mathcal{E}_{\text{eL}} &= \int_{x_{\text{obs.}}}^{\infty} \left(\frac{\mathrm{d}\mathcal{E}}{\mathrm{d}x}\right)_{\text{ion.}} \cdot N_{\theta}(x) \mathrm{d}x \simeq \\ &\simeq 2.2 \times 10^{6} \cdot N_{\theta}(x_{\text{obs.}}) \times \\ &\int_{x_{\text{obs.}}}^{\infty} \exp\left(\frac{x_{\text{obs.}} - x}{\langle \lambda_N \rangle}\right) \mathrm{d}x \\ &\qquad \langle \lambda_N \rangle \simeq 240 \, \mathrm{r/cm}^2. \end{split}$$

Число электронов на уровне наблюдения:

$$N_e(x_{obs.}) \simeq \langle N_s(x_{obs.}) \rangle - 1.8 \cdot \langle N_\mu(x_{obs.}) \rangle.$$

Экспериментально измеренная энергия $\mu^{+/-}$:

$$E_{\mu} = \langle E_{1\mu} \rangle \cdot \langle N_{\mu}(x_{\text{obs.}}) \rangle$$

$$\langle E_{1\mu} \rangle = 10.6 \, \text{GeV}.$$

Глушков, Сабуров (ИКФИА)

Переоценка энергии...

Таблица 1: наблюдаемые параметры ШАЛ с $E_0 = 10^{18}$ эВ и соз $\theta = 0.95$ от

первичных ядер А согласно моделям и эксперименту (оценка Якутск-1982):

		$k_{\gamma}(\theta)$	$k_{\text{ion.}}(\theta)$	$F(\theta)$	$\langle N_{\rm S}(\theta) \rangle$	$\rho_{s,600}(\theta)$	$\langle N_{\mu}(\theta) \rangle$
модель	Α	$(\times 10^4)$	$(\times 10^4)$	$(\times 10^{13})$	$(\times 10^8)$		$(\times 10^{6})$
		э B^2	э B^2	$ m 3B^{-1}$		M^{-2}	
QGSJet01d	Р	0.341	2.846	2.104	2.178	2.312	5.000
	Fe	0.224	2.910	2.148	1.250	2.432	7.225
QGSJet-II-04	Р	0.364	2.816	2.070	2.296	2.438	5.582
	Fe	0.246	2.894	2.148	1.358	2.636	7.777
SIBYLL-2.1	Р	0.345	2.822	2.100	2.512	2.193	4.254
	Fe	0.224	2.910	2.228	1.384	2.249	4.930
EPOS-LHC	Р	0.377	2.815	2.023	2.355	2.655	5.905
	Fe	0.230	2.894	2.133	1.419	2.917	8.180
	Р	0.357	2.825	2.074	2.335	2.400	5.185
среднее	Fe	0.231	2.902	2.164	1.353	2.558	7.028
	p-Fe	0.294	2.864	2.119	1.844	2.479	6.107
эксперимент	-	3.1	700	2.510	1.793	2.656	6.000

3

Таблица 2: энергетический баланс ШАЛ ($E_0 = 10^{18}$ эВ и соз $\theta = 0.95$) от первичных

ядер (А) согласно расчетам и эксперименту (Якутск-1982):

		<i>г</i>	<i>_</i>	r	<i>_</i>	Δ Γ	<i>г</i>
		E_{γ}	Eion,	E _{el}	E_{μ}	ΔE	E0
модель	Α	$(\times 10^{17})$					
		эB	эB	эB	эB	эB	эB
QGSJet01d	р	0.806	6.620	1.469	0.517	0.565	9.978
	Fe	0.529	6.660	1.306	0.785	0.798	9.972
QGSJetll-04	р	0.859	6.476	1.474	0.547	0.624	9.980
	Fe	0.582	6.430	1.302	0.844	0.866	9.981
SIBYLL-2.1	р	0.909	6.625	1.523	0.428	0.491	9.976
	Fe	0.528	6.679	1.340	0.702	0.716	9.965
EPOS-LHC	р	0.891	6.412	1.482	0.524	0.657	9.966
	Fe	0.543	6.415	1.305	0.794	0.898	9.955
среднее	р	0.866	6.533	1.487	0.504	0.584	9.974
	Fe	0.546	6.531	1.313	0.781	0.820	9.968
	p-Fe	0.706	6.532	1.400	0.643	0.702	9.970
эксперимент	-	9.287		0.947	0.636	0.860	11.730
новая оценка	-	7.9	926	0.947	0.618	0.702	10.190

Таблица 2: энергетический баланс ШАЛ ($E_0 = 10^{18}$ эВ и соз $\theta = 0.95$) от первичных

ядер (А) согласно расчетам и эксперименту (Якутск-1982):

модель	A	$(\times 10^{17})$	Eion. (×10 ¹⁷)	$(\times 10^{17})$	$(\times 10^{17})$	ΔE (×10 ¹⁷)	$(\times 10^{17})$
		50	50	50	50	50	50
QGSJet01d	Р	0.806	6.620	1.469	0.517	0.565	9.978
	Fe	0.529	6.660	1.306	0.785	0.798	9.972
QGSJetll-04	р	0.859	6.476	1.474	0.547	0.624	9.980
	Fe	0.582	6.430	1.302	0.844	0.866	9.981
SIBYLL-2.1	р	0.909	6.625	1.523	0.428	0.491	9.976
	Fe	0.528	6.679	1.340	0.702	0.716	9.965
EPOS-LHC	р	0.891	6.412	1.482	0.524	0.657	9.966
	Fe	0.543	6.415	1.305	0.794	0.898	9.955
среднее	р	0.866	6.533	1.487	0.504	0.584	9.974
	Fe	0.546	6.531	1.313	0.781	0.820	9.968
	p-Fe	0.706	6.532	1.400	0.643	0.702	9.970
эксперимент	-	9.287		0.947	0.636	0.860	11.730
новая оценка	-	7.926		0.947	0.618	0.702	10.190

Из данных таблицы видно, что $E_i + E_{el.} + E_{\mu} \simeq 93\%(E_0)$ ΔE — не контролируется экспериментом.

Глушков, Сабуров (ИКФИА)

Обсуждение

		_	-	-	-		-
модель	A	$(\times 10^{17})$					
		эВ	эВ	эВ	эВ	эВ	эВ
QGSJet01d	Р	0.806	6.620	1.469	0.517	0.565	9.978
	Fe	0.529	6.660	1.306	0.785	0.798	9.972
QGSJetll-04	Р	0.859	6.476	1.474	0.547	0.624	9.980
	Fe	0.582	6.430	1.302	0.844	0.866	9.981
SIBYLL-2.1	Р	0.909	6.625	1.523	0.428	0.491	9.976
	Fe	0.528	6.679	1.340	0.702	0.716	9.965
EPOS-LHC	Р	0.891	6.412	1.482	0.524	0.657	9.966
	Fe	0.543	6.415	1.305	0.794	0.898	9.955
среднее	Р	0.866	6.533	1.487	0.504	0.584	9.974
	Fe	0.546	6.531	1.313	0.781	0.820	9.968
	p-Fe	0.706	6.532	1.400	0.643	0.702	9.970
эксперимент	-	9.287		0.947	0.636	0.860	11.730
новая оценка	-	7.9	7.926		0.618	0.702	10.190

Таблица 2, строка **"эксперимент"**: $\sum E = 1.173 \times 10^{18}$ эВ, $\langle E_0 \rangle = 0.997 \times 10^{18}$ зВ

イロト イロト イヨト イヨト 二日

		E	E	E	E	ΔE	E
молель	Α	$(\times 10^{27})^{27}$	$(\times 10^{17})$	$(\times 10^{17})$	$(\times 10^{2} \mu)^{17}$	$(\times 10^{17})$	$(\times 10^{17})$
		эВ	эВ	эВ	эВ	эВ	эВ
QGSJet01d	р	0.806	6.620	1.469	0.517	0.565	9.978
	Fe	0.529	6.660	1.306	0.785	0.798	9.972
QGSJetll-04	р	0.859	6.476	1.474	0.547	0.624	9.980
	Fe	0.582	6.430	1.302	0.844	0.866	9.981
SIBYLL-2.1	р	0.909	6.625	1.523	0.428	0.491	9.976
	Fe	0.528	6.679	1.340	0.702	0.716	9.965
EPOS-LHC	р	0.891	6.412	1.482	0.524	0.657	9.966
	Fe	0.543	6.415	1.305	0.794	0.898	9.955
среднее	р	0.866	6.533	1.487	0.504	0.584	9.974
	Fe	0.546	6.531	1.313	0.781	0.820	9.968
	p-Fe	0.706	6.532	1.400	0.643	0.702	9.970
эксперимент	-	9.287		0.947	0.636	0.860	11.730
новая оценка	-	7.926		0.947	0.618	0.702	10.190

Таблица 2, строка **"эксперимент"**: $\sum E = 1.173 \times 10^{18}$ эВ, $\langle E_0 \rangle = 0.997 \times 10^{18}$ зВ разница В ~ 1.18 раза

		E	E	E	E	ΔE	E
молель	Α	$(\times 10^{27})^{27}$	$(\times 10^{17})$	$(\times 10^{17})$	$(\times 10^{2} \mu)^{17}$	$(\times 10^{17})$	$(\times 10^{17})$
		эВ	эВ	эВ	эВ	эВ	эВ
QGSJet01d	р	0.806	6.620	1.469	0.517	0.565	9.978
	Fe	0.529	6.660	1.306	0.785	0.798	9.972
QGSJetll-04	р	0.859	6.476	1.474	0.547	0.624	9.980
	Fe	0.582	6.430	1.302	0.844	0.866	9.981
SIBYLL-2.1	р	0.909	6.625	1.523	0.428	0.491	9.976
	Fe	0.528	6.679	1.340	0.702	0.716	9.965
EPOS-LHC	р	0.891	6.412	1.482	0.524	0.657	9.966
	Fe	0.543	6.415	1.305	0.794	0.898	9.955
среднее	р	0.866	6.533	1.487	0.504	0.584	9.974
	Fe	0.546	6.531	1.313	0.781	0.820	9.968
	p-Fe	0.706	6.532	1.400	0.643	0.702	9.970
эксперимент	-	9.287		0.947	0.636	0.860	11.730
новая оценка	-	7.926		0.947	0.618	0.702	10.190

Таблица 2, строка **"эксперимент"**: $\sum E = 1.173 \times 10^{18}$ эВ, $\langle E_0 \rangle = 0.997 \times 10^{18}$ эВ разница в ~ 1.18 раза

(Якутск'82): $k=3.7\times10^4$ эВ/фотон эВ $^{-1}$ CORSIKA: $\langle k\rangle=3.157\times10^4$ эВ/фотон эВ $^{-1}$

E_0 , восстановленная из $ho_{s,600}(heta)$ в ливнях с $\langle \cos heta angle = 0.95$

Глушков, Сабуров (ИКФИА)

୬୯୯ 21/24

(13)

Энергетический спектр КЛ

E

・ロト ・部ト ・ヨト ・ヨト

1

→ ∃ →

Заключение

E

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Глушков, Сабуров (ИКФИА)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

 С использованием кода CORSIKA в рамках нескольких моделей адронных взаимодействий при сверхвысоких энергиях были рассчитаны отклики в наземных детекторах ЯКУ ШАЛ

- С использованием кода CORSIKA в рамках нескольких моделей адронных взаимодействий при сверхвысоких энергиях были рассчитаны отклики в наземных детекторах ЯКУ ШАЛ
- Расчеты показали, что в выражениях (1) и (4) энергия, рассеянная в атмосфере в виде электромагнитной компоненты, была завышена на 12%-17%, в зависимости от x_{max}
 - в (4) ситуация была усугублена недооценкой прозрачности атмосферы ($\sim 17\%$)

- С использованием кода CORSIKA в рамках нескольких моделей адронных взаимодействий при сверхвысоких энергиях были рассчитаны отклики в наземных детекторах ЯКУ ШАЛ
- Расчеты показали, что в выражениях (1) и (4) энергия, рассеянная в атмосфере в виде электромагнитной компоненты, была завышена на 12%-17%, в зависимости от x_{max}
 - в (4) ситуация была усугублена недооценкой прозрачности атмосферы (~ 17%)
- Обновленная калориметрия (13) привела к уменьшению оценки энергии *E*₀ в сравнении с (1) в ~ 1.33 раза (и, соответственно, к уменьшению интенсивности полученного спектра КЛ)

- С использованием кода CORSIKA в рамках нескольких моделей адронных взаимодействий при сверхвысоких энергиях были рассчитаны отклики в наземных детекторах ЯКУ ШАЛ
- Расчеты показали, что в выражениях (1) и (4) энергия, рассеянная в атмосфере в виде электромагнитной компоненты, была завышена на 12%-17%, в зависимости от x_{max}
 - в (4) ситуация была усугублена недооценкой прозрачности атмосферы (~ 17%)
- Обновленная калориметрия (13) привела к уменьшению оценки энергии *E*₀ в сравнении с (1) в ~ 1.33 раза (и, соответственно, к уменьшению интенсивности полученного спектра КЛ)
- Независимый метод оценки энергии на основе отклика наземных детекторов дал схожие результаты

- С использованием кода CORSIKA в рамках нескольких моделей адронных взаимодействий при сверхвысоких энергиях были рассчитаны отклики в наземных детекторах ЯКУ ШАЛ
- Расчеты показали, что в выражениях (1) и (4) энергия, рассеянная в атмосфере в виде электромагнитной компоненты, была завышена на 12%-17%, в зависимости от x_{max}
 - в (4) ситуация была усугублена недооценкой прозрачности атмосферы (~ 17%)
- Обновленная калориметрия (13) привела к уменьшению оценки энергии *E*₀ в сравнении с (1) в ~ 1.33 раза (и, соответственно, к уменьшению интенсивности полученного спектра КЛ)
- Независимый метод оценки энергии на основе отклика наземных детекторов дал схожие результаты
- Оба метода в пределах 10-15% согласуются с расчетами

- С использованием кода CORSIKA в рамках нескольких моделей адронных взаимодействий при сверхвысоких энергиях были рассчитаны отклики в наземных детекторах ЯКУ ШАЛ
- Расчеты показали, что в выражениях (1) и (4) энергия, рассеянная в атмосфере в виде электромагнитной компоненты, была завышена на 12%-17%, в зависимости от x_{max}
 - в (4) ситуация была усугублена недооценкой прозрачности атмосферы (~ 17%)
- Обновленная калориметрия (13) привела к уменьшению оценки энергии *E*₀ в сравнении с (1) в ~ 1.33 раза (и, соответственно, к уменьшению интенсивности полученного спектра КЛ)
- Независимый метод оценки энергии на основе отклика наземных детекторов дал схожие результаты
- Оба метода в пределах 10-15% согласуются с расчетами
- Полученные спектры КЛ лучше согласуются с мировыми данными

・ロト ・聞 ト ・ 国 ト ・ 国 ト …