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Quantum fields

The goal of QFT is to calculate correlation functions, which
are building blocks for observables: cross–sections and/or
currents;
In high energy particle physics one uses only Poincaré invariant
states:

⟨
𝜑(x1) . . . 𝜑(xn)

⟩
0
= F0

(︁{︁ ⃒⃒
Δx jk

⃒⃒
± i 0 signΔtjk

}︁)︁
,

where x = (t, x⃗) and Δx jk = x j − xk , j = 1, n.
In condensed matter theory one frequently restricts attention
to (stationary) thermal states:

⟨
𝜑(x1) . . . 𝜑(xn)

⟩
T
= FT

(︁{︁
Δtjk

}︁⃒⃒⃒
x⃗1, . . . , x⃗n

)︁
, Δtjk = tj−tk .

Or slight deviations from them, which are close to equilibrium.
The action of the theory can be Poincaré invariant, but the
state in such a theory does not have to respect the symmetry.
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Quantum fields in early Universe

There is a good reason to consider correlation functions of
such states due to our everyday experience: present day
Universe has a very small curvature and we mostly deal with
processes which are very close to equilibrium, even if they are
out of equilibrium;
However, the common wisdom is to consider also isometry
invariant or very special states in de Sitter space–time;
Meanwhile in the early Universe, if its metric was truly very
close to de Sitter one with a GUT scale curvature, the
situation was highly nonstationary. There is no any reason
that the rapid expansion has started from a highly symmetric
state with isometry invariant correlation functions:⟨

𝜑(x1) . . . 𝜑(xn)
⟩
U
= FU

(︁
x1, . . . , xn

)︁
.

Furthermore, the metric was only approximately equivalent of
the de Sitter one.
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Observables in early Universe

After a rapid expansion such correlation functions can become
almost spatially homogeneous:⟨

𝜑(x1) . . . 𝜑(xn)
⟩
HU

≈ FHU

(︁
t1, . . . , tn

⃒⃒⃒
{Δx⃗jk}

)︁
.

However, there is no reason for them to become
simultaneously stationary, dependent only on Δtjk , in the
time–dependent background;
When the curvature of the Universe is of GUT scale,
observables are various stress–energy fluxes. (In–Out
scattering cross–sections are not well defined.) Such
observables can be measured only indirectly — e.g. via their
backreaction on the background geometry.
Furthermore, there is no reason to assume that stress–energy
fluxes in early Universe were separable into anything like
particles.
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Quantum fields out of equilibrium

QFT does have a tool to calculate correlation functions even
in such unusual conditions;

To get an unambiguous answer for correlation functions in
non–stationary situations one has to specify an initial Cauchy
surface, a basis of modes, an initial state and then use the
Schwinger-Keldysh rather than the Feynman diagrammatic
technique.

In the described circumstances loop corrections do not just
lead to UV renormalization of various coupling constants and
masses, they also contain IR secular memory effects, which are
totally absent in equilibrium. These loop effects are sensitive
to initial and boundary conditions and can provide corrections
to correlation functions, which can be even grater than
tree–level contributions.
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Why all these observations are important for the physics in
the early Universe?

If correlation functions are not isometry invariant, then ⟨T𝜇𝜈⟩
is not proportional to g𝜇𝜈 . Furthermore, loop secular memory
effects can strongly affect ⟨T𝜇𝜈⟩, which can lead to the
screening of the cosmological constant.
Initial state of QFT in the early Universe (of GUT scale
curvature) does not have to be a thermal state of a standart
matter (dust or radiation). It can be any quantum state. We
don’t really know which state.
States with plankian distribution in curved backgrounds (for
exact modes) with generic temperature T lead to singularities
in ⟨T𝜇𝜈⟩ on the horizons 2010.10877, 2005.13952, 2106.01791.
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Equilibrium vs. non–stationary

Time evolution of a correlation function:

⟨
Ô
⟩
(t) ≡

⟨
𝜓0

⃒⃒⃒
Te

i
∫︀ t
t0

dt′ Ĥ(t′)
Ô Te

−i
∫︀ t
t0

dt′ Ĥ(t′)
⃒⃒⃒
𝜓0

⟩
,

where Ĥ(t) = Ĥ0(t) + V̂ (t). True both in Srodinger and
Heisenberg representations.
In the interaction representation:

⟨
Ô
⟩
(t) =

⟨
𝜓0

⃒⃒⃒
Ŝ+(t, t0) Ô0(t) Ŝ(t, t0)

⃒⃒⃒
𝜓0

⟩
=⟨

𝜓0

⃒⃒⃒
Ŝ+(+∞, t0)T

[︁
Ô0(t) Ŝ(+∞, t0)

]︁ ⃒⃒⃒
𝜓0

⟩
,

where Ŝ(t, t0) = Te
−i

∫︀ t
t0

dt′ V̂0(t′). The dependence on t0 is of
crucial importance here.
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Equilibrium situation

Equilibrium situation is when:
1 The normal ordered free Hamiltonian Ĥ0 is time independent

and bounded from below;
2 The expectation value should be taken over the ground state

of Ĥ0: |𝜓0⟩ = |0⟩, Ĥ0 |0⟩ = 0;
3 Interaction term, V̂ , is turned on adiabatically after t0 and

then switched off adiabatically after t. In effect we have to
make the substitution as follows:
Ŝ(+∞, t0) → Ŝtt0(+∞,−∞).

Then
⃒⃒⃒⟨
0
⃒⃒⃒
Ŝ
⃒⃒⃒
0
⟩⃒⃒⃒

= 1 and
⟨
n ̸= 0

⃒⃒⃒
Ŝ
⃒⃒⃒
0
⟩
= 0, where

Ŝ ≡ Ŝtt0(+∞,−∞), and⟨
Ô
⟩
(t) =

∑︁
n

⟨
0
⃒⃒⃒
Ŝ+

⃒⃒⃒
n
⟩⟨

n
⃒⃒⃒
T
[︁
Ô0(t) Ŝ

]︁ ⃒⃒⃒
0
⟩
=

=

⟨
0
⃒⃒⃒
T
[︁
Ô0(t) Ŝ

]︁ ⃒⃒⃒
0
⟩

⟨
0
⃒⃒⃒
Ŝ
⃒⃒⃒
0
⟩ .
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Example of out of equilibrium

Consider e.g.

S =

∫︁
dDx

√︀
|g |

[︂
1
2
𝜕𝜇𝜑𝜕

𝜇𝜑+
m2

2
𝜑2 +

𝜆

4
𝜑4

]︂
,

in the background: ds2 = −dt2 + a2(t) dx⃗2.
The mode expansion of the field operator is as follows:

𝜑(t, x⃗) =

∫︁
dD−1p⃗

(2𝜋)D−1

[︁
âp⃗ fp(t) e

−i p⃗ x⃗ + h.c.
]︁
.

In Schwinger–Keldysh technique every field is essentially
characterized by two propagators:

i DR
0

(︁
t1, t2

⃒⃒⃒
p⃗
)︁
≡ i 𝜃(t2 − t1)

[︁
𝜑(t1, p⃗), 𝜑(t2,−p⃗)

]︁
=

= 𝜃(t2 − t1) Im
(︁
fp(t1) f

*
p (t2)

)︁
.

The propagator is state independent.
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The Keldysh propagator

The Keldysh propagator:

i DK
0

(︁
t1, t2

⃒⃒⃒
p⃗
)︁
≡ 1

2

⟨{︁
𝜑(t1, p⃗), 𝜑(t2,−p⃗)

}︁⟩
=

=

(︂
1
2
+ n0

p

)︂
fp(t1) f

*
p (t2) + 𝜅0

p fp(t1) f−p(t2) + c.c. .

It characterizes the state of the theory:

⟨
â+p⃗ âq⃗

⟩
≡

∑︁
n

𝜌0
n

⟨
n
⃒⃒⃒
â+p⃗ âq⃗

⃒⃒⃒
n
⟩
= n0

p 𝛿 (p⃗ − q⃗) ,⟨
â+p⃗ â+q⃗

⟩*
=

⟨
âp⃗ âq⃗

⟩
= 𝜅0

p 𝛿 (p⃗ + q⃗) ,

If the state is spatially homogeneous.
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Thermalization in flat space–time

In Minkowski space–time: fp(t) = e−i 𝜔p t√
2𝜔p

, where

𝜔p =
√︀
p⃗2 +m2.

If 𝜅0
p = 0, but n0

p ̸= 0 the two–loop correction to the Keldysh
propagator in the limit t ≡ t1+t2

2 ≫ |t1 − t2| is as follows:

n0+2
p (t) ≈ n0

p + 𝜆2 · (t − t0) ·
I
[︀
n0]︀
𝜔p

,

where

I
[︀
n0]︀ ∝ ∫︁

dD−1q⃗1 d
D−1q⃗2 d

D−1q⃗3

𝜔1 𝜔2 𝜔3
𝛿(D)

(︁
p + q1 − q2 − q3

)︁
×

×
[︁ (︀

1+ n0
p

)︀ (︀
1+ n0

1
)︀
n0
2 n

0
3 − n0

p n
0
1
(︀
1+ n0

2
)︀ (︀

1+ n0
3
)︀ ]︁
.
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Thermalization in flat space–time

Violation of the time–translational symmetry.
IR catastrophe: Unlike the stationary situation, the parameter
t0 cannot be taken to the past infinity.
For the plankian level–population, nTp = 1

e𝜔p/T−1
, the collision

integral vanishes I
[︀
nT

]︀
= 0. Energy conservation!

Even if 𝜆 is small, after a long enough evolution time,
t − t0 → ∞, the secular loop correction becomes of the same
order as the tree–level contribution 𝜆2 (t − t0) I/𝜔 ∼ 1.
Unlike the UV renormalization, in this IR case there is a clear
grading between contributing diagrams.
Classical kinetic equation resums IR loop corrections.
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Thermalization with anomalous quantum expectation values

Whats if we choose a state with modes as follows:
fp(t) = 𝛼p

e−i 𝜔p t√
2𝜔p

+ 𝛽p
e i 𝜔p t√

2𝜔p
?

Conditions:
– |𝛼p|2 − |𝛽p|2 = 1, to have the proper commutation relations
for âp⃗ and â+p⃗ and for the field and its conjugate momentum;
– One should also demand that 𝛽p → 0, as 𝜔p → ∞, to have
the proper (Hadamard) UV behaviour.
To describe dynamics close to equilibrium one needs a system
of kinetic equations for level populations and anomalous
expectation values
If 𝛽p is small, then thermalization does happen (see
arXiv:2110.00454).
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Peculiarities in curved backgrounds

Static patch

ho
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horizon
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C

Figure: Penrose diagram of the global de Sitter space–time. Red dotted
region is the expanding Poincaré patch, velvet coloured region is the
static patch. “A”, “B” and “C” are Cauchy surfaces in different patches.
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The same sort of problems do also appear in flat spacetime

Future Wedge
Rindler space

Rindler Wedge

ho
riz

on
horizon

Future Wedge
Rindler space

Figure: The dashed lines depict the Cauchy surfaces in various charts
arXiv:2106.01791. Only for invariant states the situation does not depend
on the patch (paper in preparation).
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Analytic continuation

In symmetric spaces there are invariant states for which
propagators are maximally analytic functions of geodesic
distances: G (x , y) = G (lxy ).
For such states independently of the Patch loop corrections
can be mapped to the Euclidian signature, e.g.:

∫︁
Eucl

dy dz G (lxy )G
3(lyz)G (lzw ) =

=

∫︁
Patch

dy dz G (lxy )G
3(lyz)G (lzw ).

These are the states that we deal with in high energy physics.
For states out of equilibrium that is not true.
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E.g. in expanding Poincare patch of de Sitter space–time

Expanding patch: ds2 = −dt2 + e2t dx⃗2.
Bunch–Davies modes: fp(t) ∝ e

D−1
2 t H

(1)
i𝜇 (p e−t), where

𝜇 =

√︁
m2 −

(︀
D−1

2

)︀2
.

In the expanding Poincare patch for the Bunch–Davies state
one obtains secular growth rather than secular divergence:

n
(2)
p (t) ∝ 𝜆2 log

(︂
𝜇

p e−t

)︂
∼ 𝜆2 t,

and 𝜅
(2)
p (t) ∝ 𝜆2 log

(︂
𝜇

p e−t

)︂
∼ 𝜆2 t,

In x–space:

G0+2(Zxy ) ≈
[︁
1+ 𝜆2 K logZxy

]︁
G0(Zxy ), |Zxy | → ∞,

where K is some constant and Zxy is hyperbolic distance.
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In contracting Poincare patch of de Sitter space–time

Contracting patch: ds2 = −dt2 + e−2t dx⃗2. Time reversal of
the expanding patch.
Now in the loops one sees the secular divergence:

n
(2)
p (t), 𝜅

(2)
p (t) ∝

⎧⎨⎩ 𝜆2 log
(︁

p et

p et0

)︁
∼ 𝜆2 (t − t0) p et < 𝜇,

𝜆2 log
(︁

𝜇
p et0

)︁
p et > 𝜇.

Loop corrected propagator is not a function of the geodesic
distance anymore. For any initial state!
Global de Sitter contains both expanding and contracting
patches. The situation there is similar to the one in
contracting patch.
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Conclusions

Secular memory loop effects are generic property of QFT out
of equilibrium.
No energy conservation in curved backgrounds: unlike high
energy QFT out of equilibrium one has to work as in open
condensed matter system.
In general the resummation is unsolved problem. Partial
solution of the problem is given in 2105.05039, 1901.07293.
The question is if equilibration happens before the strong
backreaction on the background geometry or after?

THANKS !
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