MOTIVATION	e^+e^- colliders	WHAT DO WE HAVE?	WHAT DO WE NEED?	Outlook
0000	00	0000000	00	0

High precision tests of the Standard Model at future e+e- colliders

Andrej Arbuzov

BLTP, JINR, Dubna

Advances in Quantum Field Theory BLTP JINR, Dubna, 11-14th October 2021

11th October 2021

Andrej Arbuzov

Tests of SM at e+e-...

MOTIVATION	e^+e^- colliders	WHAT DO WE HAVE?	WHAT DO WE NEED?	OUTLOOK
				-

OUTLINE

- **3** WHAT DO WE HAVE?
- **4** What do we need?

MOTIVATION 0000	e^+e^- colliders	WHAT DO WE HAVE?	WHAT DO WE NEED? 00	Outlook o

MOTIVATION

- We don't have clear hints for new physics energy scales
- To be honest, most likely no any new physics will be found at the LHC
- But we do need a new collider to scrutinize the SM
- That should be a e^+e^- machine
- Having high-precision theoretical description of SM processes is of crucial importance
- It is time to develop the physical program for future high-energy e^+e^- colliders

MOTIVATION	e^+e^- colliders	WHAT DO WE HAVE?	WHAT DO WE NEED?	Outlook
0000	00	0000000	00	0

QUESTIONS

QUESTIONS:

- What do we have?
- What do we need?
- What to do?
- How to do?

MOTIVATION	e^+e^- colliders	WHAT DO WE HAVE?	WHAT DO WE NEED?	Outlook
0000	•0	000000	00	0

FUTURE e^+e^- COLLIDER PROJECTS

Linear Colliders

- ILC, CLIC
- ILC: technology is ready, might not be built in Japan (?)

E_{tot}

- ILC: 91; 250 GeV 1 TeV
- CLIC: 500 GeV 3 TeV

 $\mathcal{L}\approx 2\cdot 10^{34}~cm^{-2}s^{-1}$

Stat. uncertainty $\sim 10^{-3}$

Beam polarization: e^{-} beam: P = 80 - 90% e^{+} beam: P = 30 - 60%

Circular Colliders

- FCC-ee, TLEP
- CEPC
- $\mu^+\mu^-$ collider (?)

 E_{tot}

• 91; 160; 240; 350 GeV

 $\mathcal{L}\approx 2\cdot 10^{36}~cm^{-2}s^{-1}$ (4 exp.)

Stat. uncertainty $< 10^{-3}$

 e^- beam polarization is desirable

MOTIVATION	e^+e^- colliders	WHAT DO WE HAVE?	WHAT DO WE NEED? 00	OUTLOOK

SUPER CHARM-TAU FACTORY PROJECTS

Budker Institute of Nuclear Physics in Novosibirsk (Sarov) and/or China

Colliding electron-positron beams with c.m.s. energies from 2 to 8 GeV with unprecedented high luminosity $10^{35} cm^{-2} c^{-1}$

The electron beam will be longitudinally polarized

The main goal of experiments at the Super Charm-Tau factory is to study the processes charmed mesons and tau leptons, using a data set that is 2 orders of magnitude more than the one collected by BESIII

MOTIVATION	e ⁺ e [−] COLLIDERS	What do we have?	WHAT DO WE NEED?	OUTLOOK
0000	00	•000000		O

LEP RESULTS

	Stanford	1999	Э
	Measurement	Pull	Pull -3 -2 -1 0 1 2 3
m _z [GeV]	91.1871 ± 0.0021	.08	
Γ _z [GeV]	2.4944 ± 0.0024	56	-
σ ⁰ _{hadr} [nb]	41.544 ± 0.037	1.75	
R _e	20.768 ± 0.024	1.16	_
A ^{0,e}	0.01701 ± 0.00095	.80	-
A _e	0.1483 ± 0.0051	.21	
Α _τ	0.1425 ± 0.0044	-1.07	
sin ² θ ^{lept}	0.2321 ± 0.0010	.60	-
m _w [GeV]	80.350 ± 0.056	62	-
R _b	0.21642 ± 0.00073	.81	-
R _c	0.1674 ± 0.0038	-1.27	_
A ^{0,b}	0.0988 ± 0.0020	-2.20	_
A ^{0,c}	0.0692 ± 0.0037	-1.23	
Ab	0.911 ± 0.025	95	-
A _c	0.630 ± 0.026	-1.46	
sin ² θ ^{lept}	0.23099 ± 0.00026	-1.95	_
$sin^2 \theta_W$	0.2255 ± 0.0021	1.13	
m _w [GeV]	80.448 ± 0.062	1.02	_
m, [GeV]	174.3 ± 5.1	.22	
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02804 ± 0.00065	05	I
			-3 -2 -1 0 1 2 3

0000 00 00000 0 0	MOTIVATION 0000	e^+e^- Colliders	What do we have? ○●○○○○○	WHAT DO WE NEED? 00	Outlook o

CALCULATIONS AND COMPUTER CODES

- 1.5-loop (+) in QED and EW
- NNLO (+) in QCD
- mixed $\alpha \alpha_s$ corrections
- a progress in methods of perturbative (and non-perturbative) calculations
- semi-analytic codes: ZFITTER, DIZET, TOPAZ0, Gfitter, ...
- Monte Carlo event generators: KKMC, BHLUMI, ReneSANCe, ...

But that is not enough for FCC-ee

MOTIVATION e^+e^- CollidersWhat do we have?What do we need?Outlook00000000000000

FORWARD–BACKWARD ASYMMETRY A_{FB} (I) The forward–backward asymmetry is

$$A_{\rm FB} = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}}$$
$$\sigma_{\rm F} = \int_{0}^{1} \frac{d\sigma}{d\cos\vartheta_{f}} d\cos\vartheta_{f}, \qquad \sigma_{\rm B} = \int_{-1}^{0} \frac{d\sigma}{d\cos\vartheta_{f}} d\cos\vartheta_{f}$$

 ϑ_f is the angle between momenta of incoming e^- and outgoing f^- . For high-precision test the most convenient channels are $f = e, \mu$. Cases $f = \tau, b, c$ are also very interesting. Remind A_{FB}^b at LEP.

$$A_{
m FB}pproxrac{3}{4}A_eA_f, \qquad A_f\equiv 2rac{g_{V_f}g_{A_f}}{g_{V_f}^2+g_{A_f}^2}$$

FORWARD-BACKWARD ASYMMETRY A_{FB} (II)

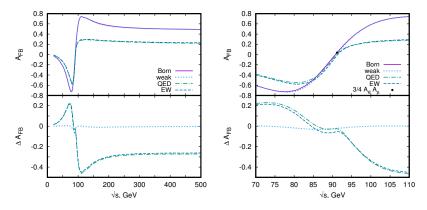


Figure: (Left) The A_{FB} asymmetry in the Born and 1-loop (weak, QED, EW) approximations and the corresponding shifts ΔA_{FB} for a wide c.m.s. energy range; (**Right**) the same for the *Z* peak region.

[A.A., S. Bondarenko, L.Kalinovskaya, Symmetry '2020] Andrej Arbuzov Tests of SM at e+e-... 11

11th October 2021 10/16

ELECTROWEAK SCHEMES

- $\alpha(0)$ scheme: fine-structure constant $\alpha(0)$ is used as input. Running of α gives a large correction
- $\alpha(M_z^2)$ scheme: effective electromagnetic constant $\alpha(M_z^2)$ is used at Born level while virtual 1-loop and real photon bremsstrahlung contributions are proportional to $\alpha^2(M_z^2)\alpha(0)$
- G_{μ} scheme: the Fermi coupling constant G_{μ} is used at the Born level while the virtual 1-loop and real photon bremsstrahlung contributions are proportional to $G_{\mu}^2 \alpha(0)$

FORWARD-BACKWARD ASYMMETRY A_{FB} (III)

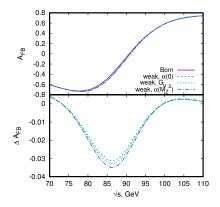


Figure: The A_{FB} asymmetry and ΔA_{FB} in the Born and complete 1-loop EW approximations within the $\alpha(0)$, G_{μ} , and $\alpha(M_z^2)$ EW schemes vs. the c.m.s energy.

MOTIVATION 0000	e^+e^- Colliders	What do we have?	WHAT DO WE NEED?	Outlook o

Notes on $A_{\rm FB}$

- Pure weak contributions are rather small at all energies
- But they are numerically relevant at the peak region because of high statistics there. EW scheme dependence is relevant
- *A*_{FB} is strongly dependent on polarization degrees
- Pure QED corrections to *A*_{FB} in higher orders are known with high precision [S.Jadach, S.Yost, PRD 2019], [J.Blumlein, A.De Freitas, K.Schönwald, PLB 2021]
- There is an interesting idea [P.Janot, JHEP 2016] to use the $A_{\rm FB}$ asymmetry to get $\alpha(M_{\rm Z})$
- One-loop corrections to A_{FB} contain contributions proportional to m_f^1 which are relevant, e.g., for *b* quarks

MOTIVATION e^+e^- CollidersWhat do we have?What do we need?Outlook00000000000000 \bullet 00

FCC PHYSICS OPPORTUNITIES

Observable	present value \pm error	FCC-ee stat.	FCC-ee syst.
M_Z (keV/c ²)	91186700 ± 2200	5	100
Γ_Z (keV)	2495200 ± 2300	8	100
$\alpha_s(M_Z)$ (×10 ⁴)	1196 ± 30	0.1	0.45-1.6
$\sin^2 \theta_W^{\text{eff}} (\times 10^6)$	231480 ± 160	3	2–5
N_{ν} (×10 ³)	2920 ± 50	0.8	small
$A_{\rm FB}^{b}$ (×10 ⁴)	992 ± 16	0.02	1–3
$m_t ({\rm MeV/c^2})$	172740 ± 500	20	small
$\Gamma_t ({\rm MeV}/{\rm c}^2)$	1410 ± 190	40	small
$\lambda_t/\lambda_t^{ m SM}$	1.2 ± 0.3	0.08	small

The Higgs self-coupling with an error of 32%

[A.Abada,..., A.A. et al. EPJC '2019]

Andrej Arbuzov

Tests of SM at e+e-...

MOTIVATION e	+e ⁻ COLLIDERS	WHAT DO WE HAVE?	WHAT DO WE NEED?	OUTLOOK
0000 C	00	000000	0•	0

PRECISION ESTIMATES

	Quantity		Theory error		Exp. error		
	M_W [MeV]		4		15		
Now:	$\sin^2 \theta_{eff}^l [10^{-5}]$		4.5		16		
	Γ_Z [MeV]		0.5		2.3		
	$R_b[10^{-5}]$		15		66		
Quantity	ILC	FCC-ee	2	CEPC	Projected theory error		
M_W [MeV]	3–4	1		3	1		
$\sin^2\theta_{e\!f\!f}^l[10^{-5}]$	1	0.6		2.3	1.5		
Γ_Z [MeV]	0.8	0.1		0.5	0.2		
$R_b[10^{-5}]$	14	6		17	5–10		

The estimated error for the theoretical predictions of these quantities is given, under the assumption that $O(\alpha \alpha_s^2)$, fermionic $O(\alpha^2 \alpha_s)$, fermionic $O(\alpha^3)$, and leading four-loop corrections entering through the ρ -parameter will become available.

Andrej Arbuzov

MOTIVATION 0000	e^+e^- colliders	WHAT DO WE HAVE?	WHAT DO WE NEED?	Outlook ●

Outlook

- Studies of the SM physics are of ultimate importance regardless any new physics searches
- A circular e^+e^- collider should be built
- Adequately accurate theoretical predictions within the SM should be constructed
- Independent calculations and their comparisons are necessary
- Working groups are (self)organized
- Both Monte Carlo and semi-analytic codes are required
- Treatment of higher order EW effects should be improved see, e.g., [I.Dubovyk et al., JHEP 2019]
- We need 2-loop EW form factors