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CDXC-th  
Anniversary

CDXC   =    LXX x VII  



One more formula:    2121-490 =1631

1631 in Russia - during the reign of Mikhail Fedorovich Romanov 

William Oughtred has proposed to use the symbol  x for the 
multiplication.

Thomas Harriot has introduced  <  and  > for less and bigger

This formula shows when the magnificent seven was born

Actual events for us at this period



The broad scientific program of the conference covers the 
following actual topics:
•Renormalization Theory
•Multiloop Calculations
•Amplitudes
•Perturbative QCD
•Path Integrals 
•Effective Theories
•Physics Beyond the SM
•Cosmology and Dark Matter
•Gravity



Information paradox

Entropy of Hawking radiation of black holes grows up to infinity during 
evaporation and it is a manifestation of the information paradox. 

S.W. Hawking, Particle creation by black holes, 
CMP 43 (1975) 199.
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The black hole information paradox is one of the fundamental problems in physics 
(quantum mechanics, thermodynamics and the theory of general relativity)

This result is contrary to unitarity: 
the entanglement entropy has to be zero at the 
end of the evaporation process since 
the final state still must be the pure state.



Information paradox
This increase contrasts with Page's hypothetical behavior, in which 
entropy decreases after the so-called Page time and which ensures 
the unitarity of quantum mechanics

D.N.Page, Information in black hole radiation,  
PRL 71 (1993) 3743
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Information paradox

G. Penington, 1905.08255
A.Almheiri, N.Engelhardt,  
D.Marolf,H.Maxfield,1905.08762

Contents

1 Introduction 1

2 Setup 3

2.1 Two sided black hole 3

2.2 Time dependence of the mass of the evaporating BH. 4

3 Time dependence of the entanglement entropy of the evaporating

BH. 5

1 Introduction

Entropy of Hawking radiation of black holes grows up to infinity during evaporation

and it is a manifestation of the information paradox [1]. This increase contrasts with

Page’s hypothetical behavior, in which entropy decreases after the so-called page

time [2, 3] and which ensures the unitarity of quantum mechanics.

An approach to treating the problem of black hole information was proposed in

[5–7], where the ”island formula” for the entanglement entropy of Hawking radiation

based on quantum extremal surfaces [8] has been proposed and ti has been argued

that the entanglement entropy is limited during the evaporation of black holes. Ac-

cording the prescription of quantum extremal surfaces the entanglement entropy is

given, after renormalization, by the formula [5] or

S(R) =min�extI �Area(@I)4G
+ Smatter(R ∪ I)�� . (1.1)

Here I is the island whose boundary area is denoted by Area[@I] and Smatter is the

von Neumann entropy SvN(R∪I) of union of the island and the region R. Then an ex-

tremization on any possible island and then taking the minimum entropy is supposed.

This formula was confirmed for some two dimensional models [9, 10]. For two

dimensional gravity the island rule has been derived by making use of replica trick

[18, 19] and the island contribution has been associated with replica wormholes.

Page curve for evaporating black holes in JT gravity has also been studied in [20].

For a further development see [17] and refs therein. Furthermore, the four and high

dimensional black holes have been considered in [11–16] where islands were found
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This formula was confirmed for some two dimensional models [9, 10]. For two

dimensional gravity the island rule has been derived by making use of replica trick

[18, 19] and the island contribution has been associated with replica wormholes.

Page curve for evaporating black holes in JT gravity has also been studied in [20].

For a further development see [17] and refs therein. Furthermore, the four and high

dimensional black holes have been considered in [11–16] where islands were found
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dimensional black holes have been considered in [11–16] where islands were found

which should lead to the bounded entanglement entropy.

In the particular example, considered in [12] gives at large time the saturation

of the entropy by the configuration [[state]] with an island,

SI = 2⇡r2
h

G
+ c

6

b − rh
rh
+ c

6
log

16r3
h
(b − rh)2
G2b

. (1.2)

meanwhile entropy for small time corresponding to non-island configuration increases

with time linearly

SnI � c

6

t

rh
, (1.3)

Equalizing the entropy without island with the entropy with island one estimates the

Page time [12]

tPage ∼ 6⇡r3
h

cG
(1.4)

In this letter we note that applying the above estimations to the black hole evap-

oration the second term cb�6rh may become dominating and the entropy starts to

increase with decreasing of the mass of black hole. This is just an opposite behavior

as compare with the estimation based on taking into account the first term 2⇡r2
h
�G

in (1.2) and leading to decreasing of entropy with decreasing of the mass of black

hole and estimation (1.4). Di↵erent scenarios can be realized depending on the initial

parameters of the evaporating black hole. In the first scenario, before the Page time

tPage the entropy increases, then decreases for some time, but then at the moment

texpl an explosion begins. One can say that time evolution follows the anti-Page

curve. This anti-Page part of evolution ends with a blow up at the point tblow, where

the mass of the black hole is completely lost. For another scenario, the period of

decreasing entropy disappears, and the initial increase in entropy, inherent in the

configuration without an island, is replaced by the blasting behavior inherent in the

configuration with an island with a small black hole mass. In this case the Page point

is not realized. Question: can we realize this out of Planck area. —–[[CHECK that

this is possible]] Also, the black hole can disappear before the Page time —–[[CHECK

that this is possible]].
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The entanglement entropy of Hawking radiation S(R) is identified with the generalized 
entropy Sgen giving the minimum value over the choice of location of the islands.

The paper is organized as follows. In the setup Section 2 we remind the formula

for the entanglement entropy for configurations without and with an island for two

sided eternal 4-dimensional Schwarzschild black hole obtained in [40]. In Section 3

we study the exchange of dominance between di↵erent configurations with an island

and without an island for the evaporating black hole in details, especially in the

end of evaporation. Special attention is paid to the localization of the occurrence of

quantum e↵ects in this process. In Section 4 we study a regularization of previous

calculations that permits to consider the total evaporation of the black hole.

2 Setup

2.1 Two-sided black hole

R− R+
I b+a+a−

b−

Figure 2. The island configuration for two-sided black hole considered in [40].

One of the simple examples explicitly demonstrated how an island can help to

make the bounded entanglement entropy of the Hawking radiation is the two-sided

black hole [40]. The island formula for the generalized entropy consists of two parts

Sgen = Sgr + SvN . (2.1)

the gravity part Sgr that is associated with a nontrivial quantum extremal surface,

island, and the matter (radiation) von Neumann entropy SvN .

One supposes that the radiation is located at the union of two regions R+ and

R−, which are located in the right and left wedges in the Penrose diagram (see Fig.2)

near the null infinities, where the gravity is negligible.

The states that one considers are maximally symmetric, so the location of a

possible island is fixed by its position in (t, r) coordinates and e↵ectively one deals

with two-dimensional models with (t, r) coordinates (or deals only with s-modes)

and computes the corresponding entanglement entropy between several entangling

– 4 –



Information paradox

No discussion yet: Some proposals how to improve the situation and to get a

bounded entanglement entropy will be discussed.

2 Setup

2.1 Two sided black hole

One of simple example explicitly demonstrated how an island can help to make

bounded entanglement entropy of the Hawking radiation is two sided black hole

[12].

The island formula for the generalized entropy consists of two parts

Sgen = Sgr + SvN . (2.1)

the gravity part Sgr that is associated with a nontrivial quantum extremal surface,

island, and the matter (radiation) von Neumann entropy SvN .

One supposes that the radiation is located at regions R+ and R− that are located
near the null infinity where the gravity is negligible.

The states that one considers are maximally symmetric, so the location of a

possible island is fixed by its position in (t, r) coordinates and e↵ectively, one deals

with two dimensions models with (t, r) coordinates (or deals only with s-modes)

and computes the corresponding entanglement entropy between several entangling

regions using two dimensional answers [21].

It is convenient to work within the Kruskal coordinates [30]

U = −
�

r − rh
rh

e
− t−(r−rh)

2rh , V =
�

r − rh
rh

e
t+(r−rh)

2rh , (2.2)

by which the corresponding two dimensional part of the Schwarzschild is

ds22−dimpartSchw
= −!−2dUdV, ! =� r

4r3
h

e
r−rh
2rh . (2.3)

For the configuration without islands, the entanglement entropy of the Hawking

radiation is identified with that in the region R = R+ ∪R− (left) and
SnI = c

6
log d(`1, `2), (2.4)

d(`1, `2) is the geodesic distance between points `1 and `2 is given by

d(`1, `2) =
�����U(`2) −U(`1)��V (`1) − V (`2)�

W (`1)W (`2) . (2.5)
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Penrose diagram of the static Schwarzschild spacetime 

K.Hashimoto, N.Iizuka,  
Y.Matsuo, 
2004.05863

Here points `1 and `2 are located at (tb, b+) and (−tb + i4⇡rh, b−). The total entan-

glement entropy for this configuration is given by

SnI = 2⇡b2

GN

+ c

6
log �16r2h(b − rh)

b
cosh2 tb

2rh
� . (2.6)

At tb � b (> rh), so the above result is approximated as

S � c

6

tb
rh

, (2.7)

which grows linearly in time. [[At the late times where

c t

rh
� r2

h

GN
, (2.8)

this entropy becomes much larger than the black hole entropy.]]

For the configuration with islands, presented in Fig.??. A), the entanglement

entropy for the conformal matter is given by

Smatter = c

3
log

d(a+, a−)d(b+, b−)d(a+, b+)d(a−, b−)
d(a+, b−)d(a−, b+) (2.9)

Locations of a± and b± as indicated in Fig.?? and d(`1, `2) is given by (2.5). Supposing

that
√
G < rh � b and extrimezing of the total entropy on island coordinate one gets

[] an unique location for island coordinates, that are ta = tb and a = rh+rhX2(b,G, c),
where X2 << 1. At this configuration the total entanglement entropy is given by

SI = 2⇡r2
h

G
+ c

6

b − rh
rh
+ c

6
log

16r3
h
(b − rh)2
G2b

. (2.10)

The main claim from [12] and [14] is that although at early times one has a linear

growth, the island comes to rescue the unitarity at late times in agreement with the

Page curve. Equalizing the entropy without island SnI with the entropy SI with

island one estimate the Page time

tPage[[∼ 6⇡r2
h

cG
rh]] ∼ 6⇡r3

h

cG
(2.11)

[[Both answers for the Page time, for two sided and one sided, are the same. Remove]]

2.2 Time dependence of the mass of the evaporating BH.

In four dimensions, due to radiation the mass M of the black hole is reduced as [4]

M(t) = r0
2G
�1 − 24↵ cGt

r30
�1�3 (2.12)

where ↵ is a constant dependent on the spin of the radiating particle, c is the number

of massless matter fields and r0 is the Schwarzschild radius at t = 0. The [[semiclas-

sical]] estimate of the black hole lifetime is

tevaporate = r30
24c↵G

(2.13)

– 4 –

Linear  
in time 
at large 
time  
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Figure 1. Penrose diagram of the static Schwarzschild spacetime without island (left) and that
with an island I (right). The region R whose states are identified with the Hawking radiation has
two parts R+ and R�, which are located in the right and the left wedge, respectively. The boundary
surfaces of R+ and R� are indicated as b+ and b�, respectively. The island extends between the
right wedge and the left wedge. The boundaries of I are located at a+ and a�. At late times, the
distance between the right wedge and the left wedge is very large.

consider only free massless matter fields. We use the following two limits: the distance
between the boundary surfaces of A and B is (i) large or (ii) small, compared to the scale
of the size of the boundary surfaces.

(i) When the distance is much larger than the correlation length of the massive modes in
the KK tower of the spherical part, only the s-waves can contribute to I(A; B). The
mutual information I(A; B) is approximated by that of the two-dimensional massless
fields,

I(A; B) = [[IV+]] �
c

3
log d(x, y) (1.13)

where c is the central charge and d(x, y) is the distance between x and y which are
the boundaries of A and B, respectively.

(ii) When the distance L between the parallelly placed boundary (hyper)surfaces of A

and B is sufficiently small, the mutual information I(A; B) is given by [39, 40]

I(A; B) =  c
Area
L2

(1.14)

for c free massless matter fields, where  is a constant.8 Although the formula above
is for the flat spacetime, we expect that it can be used when the length scale of the
curvature is large compared to L.

In this paper, we evaluate the entanglement entropy of the Hawking radiation in the
asymptotically flat eternal Schwarzschild black hole, and investigate the effect of the islands,
by using the formulae eqs. (1.9), (1.11) and (1.12) with eqs. (1.13) and (1.14). Sec. 2 shows

8 The front numerical factor  in eq. (1.14) for a massless field in 4 spacetime dimensions is numerically
evaluated [40] as  = 0.00554 (boson) and  = 0.00538 (fermion).
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consider only free massless matter fields. We use the following two limits: the distance
between the boundary surfaces of A and B is (i) large or (ii) small, compared to the scale
of the size of the boundary surfaces.

(i) When the distance is much larger than the correlation length of the massive modes in
the KK tower of the spherical part, only the s-waves can contribute to I(A; B). The
mutual information I(A; B) is approximated by that of the two-dimensional massless
fields,

I(A; B) = [[IV+]] �
c

3
log d(x, y) (1.13)

where c is the central charge and d(x, y) is the distance between x and y which are
the boundaries of A and B, respectively.

(ii) When the distance L between the parallelly placed boundary (hyper)surfaces of A

and B is sufficiently small, the mutual information I(A; B) is given by [39, 40]

I(A; B) =  c
Area
L2

(1.14)

for c free massless matter fields, where  is a constant.8 Although the formula above
is for the flat spacetime, we expect that it can be used when the length scale of the
curvature is large compared to L.

In this paper, we evaluate the entanglement entropy of the Hawking radiation in the
asymptotically flat eternal Schwarzschild black hole, and investigate the effect of the islands,
by using the formulae eqs. (1.9), (1.11) and (1.12) with eqs. (1.13) and (1.14). Sec. 2 shows

8 The front numerical factor  in eq. (1.14) for a massless field in 4 spacetime dimensions is numerically
evaluated [40] as  = 0.00554 (boson) and  = 0.00538 (fermion).
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right wedge and the left wedge. The boundaries of I are located at a+ and a�. At late times, the
distance between the right wedge and the left wedge is very large.

consider only free massless matter fields. We use the following two limits: the distance
between the boundary surfaces of A and B is (i) large or (ii) small, compared to the scale
of the size of the boundary surfaces.

(i) When the distance is much larger than the correlation length of the massive modes in
the KK tower of the spherical part, only the s-waves can contribute to I(A; B). The
mutual information I(A; B) is approximated by that of the two-dimensional massless
fields,

I(A; B) = [[IV+]] �
c

3
log d(x, y) (1.13)

where c is the central charge and d(x, y) is the distance between x and y which are
the boundaries of A and B, respectively.

(ii) When the distance L between the parallelly placed boundary (hyper)surfaces of A

and B is sufficiently small, the mutual information I(A; B) is given by [39, 40]

I(A; B) =  c
Area
L2

(1.14)

for c free massless matter fields, where  is a constant.8 Although the formula above
is for the flat spacetime, we expect that it can be used when the length scale of the
curvature is large compared to L.

In this paper, we evaluate the entanglement entropy of the Hawking radiation in the
asymptotically flat eternal Schwarzschild black hole, and investigate the effect of the islands,
by using the formulae eqs. (1.9), (1.11) and (1.12) with eqs. (1.13) and (1.14). Sec. 2 shows

8 The front numerical factor  in eq. (1.14) for a massless field in 4 spacetime dimensions is numerically
evaluated [40] as  = 0.00554 (boson) and  = 0.00538 (fermion).
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surfaces of R+ and R� are indicated as b+ and b�, respectively. The island extends between the
right wedge and the left wedge. The boundaries of I are located at a+ and a�. At late times, the
distance between the right wedge and the left wedge is very large.

consider only free massless matter fields. We use the following two limits: the distance
between the boundary surfaces of A and B is (i) large or (ii) small, compared to the scale
of the size of the boundary surfaces.

(i) When the distance is much larger than the correlation length of the massive modes in
the KK tower of the spherical part, only the s-waves can contribute to I(A; B). The
mutual information I(A; B) is approximated by that of the two-dimensional massless
fields,

I(A; B) = [[IV+]] �
c

3
log d(x, y) (1.13)

where c is the central charge and d(x, y) is the distance between x and y which are
the boundaries of A and B, respectively.

(ii) When the distance L between the parallelly placed boundary (hyper)surfaces of A

and B is sufficiently small, the mutual information I(A; B) is given by [39, 40]

I(A; B) =  c
Area
L2

(1.14)

for c free massless matter fields, where  is a constant.8 Although the formula above
is for the flat spacetime, we expect that it can be used when the length scale of the
curvature is large compared to L.

In this paper, we evaluate the entanglement entropy of the Hawking radiation in the
asymptotically flat eternal Schwarzschild black hole, and investigate the effect of the islands,
by using the formulae eqs. (1.9), (1.11) and (1.12) with eqs. (1.13) and (1.14). Sec. 2 shows

8 The front numerical factor  in eq. (1.14) for a massless field in 4 spacetime dimensions is numerically
evaluated [40] as  = 0.00554 (boson) and  = 0.00538 (fermion).
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Figure 1. Penrose diagram of the static Schwarzschild spacetime without island (left) and that
with an island I (right). The region R whose states are identified with the Hawking radiation has
two parts R+ and R�, which are located in the right and the left wedge, respectively. The boundary
surfaces of R+ and R� are indicated as b+ and b�, respectively. The island extends between the
right wedge and the left wedge. The boundaries of I are located at a+ and a�. At late times, the
distance between the right wedge and the left wedge is very large.

consider only free massless matter fields. We use the following two limits: the distance
between the boundary surfaces of A and B is (i) large or (ii) small, compared to the scale
of the size of the boundary surfaces.

(i) When the distance is much larger than the correlation length of the massive modes in
the KK tower of the spherical part, only the s-waves can contribute to I(A; B). The
mutual information I(A; B) is approximated by that of the two-dimensional massless
fields,

I(A; B) = [[IV+]] �
c

3
log d(x, y) (1.13)

where c is the central charge and d(x, y) is the distance between x and y which are
the boundaries of A and B, respectively.

(ii) When the distance L between the parallelly placed boundary (hyper)surfaces of A

and B is sufficiently small, the mutual information I(A; B) is given by [39, 40]

I(A; B) =  c
Area
L2

(1.14)

for c free massless matter fields, where  is a constant.8 Although the formula above
is for the flat spacetime, we expect that it can be used when the length scale of the
curvature is large compared to L.

In this paper, we evaluate the entanglement entropy of the Hawking radiation in the
asymptotically flat eternal Schwarzschild black hole, and investigate the effect of the islands,
by using the formulae eqs. (1.9), (1.11) and (1.12) with eqs. (1.13) and (1.14). Sec. 2 shows

8 The front numerical factor  in eq. (1.14) for a massless field in 4 spacetime dimensions is numerically
evaluated [40] as  = 0.00554 (boson) and  = 0.00538 (fermion).
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Here points `1 and `2 are located at (tb, b+) and (−tb + i4⇡rh, b−). The total entan-

glement entropy for this configuration is given by

SnI = 2⇡b2

GN

+ c

6
log �16r2h(b − rh)

b
cosh2 tb

2rh
� . (2.6)

At tb � b (> rh), so the above result is approximated as

S � c

6

tb
rh

, (2.7)

which grows linearly in time. [[At the late times where

c t

rh
� r2

h

GN
, (2.8)

this entropy becomes much larger than the black hole entropy.]]

For the configuration with islands, presented in Fig.??. A), the entanglement

entropy for the conformal matter is given by

Smatter = c

3
log

d(a+, a−)d(b+, b−)d(a+, b+)d(a−, b−)
d(a+, b−)d(a−, b+) (2.9)

Locations of a± and b± as indicated in Fig.?? and d(`1, `2) is given by (2.5). Supposing

that
√
G < rh � b and extrimezing of the total entropy on island coordinate one gets

[] an unique location for island coordinates, that are ta = tb and a = rh+rhX2(b,G, c),
where X2 << 1. At this configuration the total entanglement entropy is given by

SI = 2⇡r2
h

G
+ c

6

b − rh
rh
+ c

6
log

16r3
h
(b − rh)2
G2b

. (2.10)

The main claim from [12] and [14] is that although at early times one has a linear

growth, the island comes to rescue the unitarity at late times in agreement with the

Page curve. Equalizing the entropy without island SnI with the entropy SI with

island one estimate the Page time

tPage[[∼ 6⇡r2
h

cG
rh]] ∼ 6⇡r3

h

cG
(2.11)

[[Both answers for the Page time, for two sided and one sided, are the same. Remove]]

2.2 Time dependence of the mass of the evaporating BH.

In four dimensions, due to radiation the mass M of the black hole is reduced as [4]

M(t) = r0
2G
�1 − 24↵ cGt

r30
�1�3 (2.12)

where ↵ is a constant dependent on the spin of the radiating particle, c is the number

of massless matter fields and r0 is the Schwarzschild radius at t = 0. The [[semiclas-

sical]] estimate of the black hole lifetime is

tevaporate = r30
24c↵G

(2.13)

– 4 –

No time  
dependence

The paper is organized as follows. In the setup Section 2 we remind the formula

for the entanglement entropy for configurations without and with an island for two

sided eternal 4-dimensional Schwarzschild black hole obtained in [40]. In Section 3

we study the exchange of dominance between di↵erent configurations with an island

and without an island for the evaporating black hole in details, especially in the

end of evaporation. Special attention is paid to the localization of the occurrence of

quantum e↵ects in this process. In Section 4 we study a regularization of previous

calculations that permits to consider the total evaporation of the black hole.

2 Setup

2.1 Two-sided black hole

R− R+
I b+a+a−

b−

Figure 2. The island configuration for two-sided black hole considered in [40].

One of the simple examples explicitly demonstrated how an island can help to

make the bounded entanglement entropy of the Hawking radiation is the two-sided

black hole [40]. The island formula for the generalized entropy consists of two parts

Sgen = Sgr + SvN . (2.1)

the gravity part Sgr that is associated with a nontrivial quantum extremal surface,

island, and the matter (radiation) von Neumann entropy SvN .

One supposes that the radiation is located at the union of two regions R+ and

R−, which are located in the right and left wedges in the Penrose diagram (see Fig.2)

near the null infinities, where the gravity is negligible.

The states that one considers are maximally symmetric, so the location of a

possible island is fixed by its position in (t, r) coordinates and e↵ectively one deals

with two-dimensional models with (t, r) coordinates (or deals only with s-modes)

and computes the corresponding entanglement entropy between several entangling
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Figure 3. A) The Page curve for the eternal Schwarzschild black hole. In this plot we

ignore terms of higher order in cG�r2
h
, which are small compared to tPage or SBH . Correct?.

B) The Page time dependence on mass of the eternal Schwarzschild black hole. Not for

paper. Label: fig:Page. Math.file: Page-curve-short.nb
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Here points `1 and `2 are located at (tb, b+) and (−tb + i4⇡rh, b−). The total entan-

glement entropy for this configuration is given by

SnI = 2⇡b2

GN

+ c

6
log �16r2h(b − rh)

b
cosh2 tb

2rh
� . (2.6)

At tb � b (> rh), so the above result is approximated as

S � c

6

tb
rh

, (2.7)

which grows linearly in time. [[At the late times where

c t

rh
� r2

h

GN
, (2.8)

this entropy becomes much larger than the black hole entropy.]]

For the configuration with islands, presented in Fig.??. A), the entanglement

entropy for the conformal matter is given by

Smatter = c

3
log

d(a+, a−)d(b+, b−)d(a+, b+)d(a−, b−)
d(a+, b−)d(a−, b+) (2.9)

Locations of a± and b± as indicated in Fig.?? and d(`1, `2) is given by (2.5). Supposing

that
√
G < rh � b and extrimezing of the total entropy on island coordinate one gets

[] an unique location for island coordinates, that are ta = tb and a = rh+rhX2(b,G, c),
where X2 << 1. At this configuration the total entanglement entropy is given by

SI = 2⇡r2
h

G
+ c

6

b − rh
rh
+ c

6
log

16r3
h
(b − rh)2
G2b

. (2.10)

The main claim from [12] and [14] is that although at early times one has a linear

growth, the island comes to rescue the unitarity at late times in agreement with the

Page curve. Equalizing the entropy without island SnI with the entropy SI with

island one estimate the Page time

tPage[[∼ 6⇡r2
h

cG
rh]] ∼ 6⇡r3

h

cG
(2.11)

[[Both answers for the Page time, for two sided and one sided, are the same. Remove]]

2.2 Time dependence of the mass of the evaporating BH.

In four dimensions, due to radiation the mass M of the black hole is reduced as [4]

M(t) = r0
2G
�1 − 24↵ cGt

r30
�1�3 (2.12)

where ↵ is a constant dependent on the spin of the radiating particle, c is the number

of massless matter fields and r0 is the Schwarzschild radius at t = 0. The [[semiclas-

sical]] estimate of the black hole lifetime is

tevaporate = r30
24c↵G

(2.13)
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regions using two dimensional answers [26].

It is convenient to work within the Kruskal coordinates [45] related with the

Schwarzschild coordinates t, r as

U = −
�

r − rh
rh

e
− t−(r−rh)

2rh , V =
�

r − rh
rh

e
t+(r−rh)

2rh (2.2)

and by which the corresponding two-dimensional part of the Schwarzschild metric is

ds22−dimpartSchw = −W −2dUdV, W =� r

4r3h
e

r−rh
2rh . (2.3)

For the configuration without islands the entanglement entropy SnI of the Haw-
king radiation is identified with that in the region R = R+ ∪R− and

SnI = c

6
log d(`1, `2), (2.4)

d(`1, `2) is the geodesic distance between points `1 and `2 given by

d(`1, `2) =
�����U(`2) −U(`1)��V (`1) − V (`2)�

W (`1)W (`2) . (2.5)

Here points `1 and `2 are located at (tb, b+) and (−tb + i2⇡rh, b−). The total entan-

glement entropy for this configuration is given by

SnI = 2⇡b2

G
+ c

6
log �16r2h(b − rh)

b
cosh2 tb

2rh
� . (2.6)

At tb � b (> rh), the above result is approximated as

SnI � c

6

tb
rh

(2.7)

and grows linearly in time. At the late times t � r3h
cG this entropy becomes much

larger than the black hole entropy, and this contradicts with the finiteness of the

von Neumann entropy for a finite-dimensional black hole system. In such a case an

island is expected to emerge [40].

For the configuration with the island, presented in Fig.2, the entanglement en-

tropy for the conformal matter is given by

Smatter = c

3
log

d(a+, a−)d(b+, b−)d(a+, b+)d(a−, b−)
d(a+, b−)d(a−, b+) . (2.8)

Locations of a± and b± are indicated in Fig.2 and d(`1, `2) is given by (2.5). Supposing

that
√
G < rh � b and the extremizing of the total entropy about the location of the
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2.2 Time dependence of the mass of the evaporating BH.

In four dimensions, due to radiation the mass M of the black hole is reduced as [4]

M(t) = r0
2G
�1 − 24↵ cGt

r30
�1�3 (2.12)

where ↵ is a constant dependent on the spin of the radiating particle, c is the number

of massless matter fields and r0 is the Schwarzschild radius at t = 0. The [[semiclas-

sical]] estimate of the black hole lifetime is

tevaporate = r30
24c↵G

(2.13)

3 Time dependence of the entanglement entropy of the evap-

orating BH.

In this section using equation (1.2) we analyze what happens when the black hole

lost his mass. We consider this process adiabatically just supposing that the depen-

dence of EE S on time is defined by dependence of mass of black hole on time M(t)
considered in []. From formula (1.2) one sees that for small rh, the term cb�6rh in

(1.2) dominates and in this case the entropy increases when mass of the black hole

goes to zero. We will show that just this increasing leads to so called anti-Page time

dependence of entropy of the system.

SI, b=500

SI, b=64

SI, b=10

10 S'M, b=64

10S'M, b=500

5 10 15 20 M

500

1000

1500
Sⅈ

G=0.1, c=3, MPlanck=3.18

A) B)

Figure 1. Dependence of SIsland on M . The red dashed lines show locations of Planck

mass. Math.file: Page-curve-short.nb

The typical dependence of the entanglement entropy (1.2) on mass is presented

in Fig.1. We see that this dependence has a minimum located for large b, b > rh at

Mmin = 1

4
� bc

3⇡G2
�1�3 (3.1)
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– 5 –This minimum can be realized outside of the Planck domain, i.e.

Mmin >MP lanck � 1�√G, (3.2)

that corresponds in the used approximation to

√
G < 1

64

bc

3⇡
(3.3)

[[ in all our plots c = 3, and therefore should be
√
G < b

64⇡ = 0.004975 b, i.e.
G = 0.001 we need b > 6.358
G = 0.01 we need b > 20.10
G = 0.1 we need b > 63.5814
G = 1 we need b > 201.062

]]

One can compare the entropy with island with entropy with configuration with-

out island, see Fig.2.

A) B)

C) D)

Figure 2. Dependence of SIsland and SNonIsland on M . Di↵erent blue lines correspond to

di↵erent t for the case of SNonIsland. The red dashed lines show locations of Planck mass.

Math.file: Page-curve-short.nb, Label:fig:SMm

We see that for a given mass of the black hole, after some times, depending

on the mass of the black hole, the entropy without island (blue lines with increasing

thickness for increasing time) reaches the generalized entropy with island (red curve).
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Fig.6 the competition between two entropies are show. The position of the Page
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As was mention in the introduction, due to the presence of the term [[Colomb]] term,

the island entropy start to increase and blow up in the end evaporation. This period

of evolution may obscure behind the Planck scale, or may not depending on the

parameters of the theory.

In this case we and up with pictures presented in Fig.??
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4 Time dependence of the entanglement entropy of the eva-

porating black hole in thermal coordinates

As we have seen in the previous section, time dependence of the entanglement entropy

of the evaporating black hole in the end of evaporation has singular behaviour. This

behaviour is related with singular behaviour of the Kruskal coordinates in the limit

of the black hole mass M → 0, see discussion of this problem in [44]. One can remove

this singularity using thermal coordinates [44], that provide a regularization of the

Kruskal coordinates near M = 0. These coordinates are introduced as

U = −e− t−(r−rh)
B �r − rh

rh
�

rh
B

, (4.1)

V = e t+(r−rh)
B �r − rh

rh
�

rh
B

, (4.2)

where

B = (4M + µ)G, (4.3)

and µ is a positive constant. In these coordinates the standard Schwarzschild solution

has the temperature T1�2⇡B. Two dimensional part of the Schwarzschild metric is

ds22−dimpartSchw = dU dV
W 2

, W = 1

B
� U V

(1 − 2GM
r )�

1�2
, (4.4)

compare with (2.3). For the configuration without islands, by analogy with (4.5), the

entanglement entropy of the Hawking radiation is identified with that in the region

R = R+ ∪R− and it is

SnI = c

6
logD(`1, `2), (4.5)

where d(`1, `2) is the geodesic distance between points `1 and `2 given by

D(`1, `2) =
����(U (`2) −U (`1)) (V (`1) − V (`2))

W (`1)W (`2) . (4.6)

Here points `1 and `2 are located at (tb, b+) and (−tb + i⇡B, b−). The regularized

entanglement entropy for the configuration presented in Fig.2 is given by

SI,reg = 2⇡a2

G
+ c

3
logLreg(a, b, ta, t,b, rh, µ), (4.7)

where

Lreg(a, b, ta, t,b, rh, µ)2 =Rreg(a, b, ta, t,b, rh, µ) = D(a+, a−)D(b+, b−)D(a+, b+)D(a−, b−)D(a+, b−)D(a−, b+) .
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The regularized  entanglement entropy

Lreg = D(a+, a−)D(b+, b−)D(a+, b+)D(a−, b−)D(a+, b−)D(a−, b+) .

The explicit expression for Rreg is given by

Rreg = 16B4(a − rh)(b − rh) cosh2 � taB � cosh2 � tbB��ea−b
B �a−rhb−rh �

rh
B + e b−a

B � b−rha−rh �
rh
B − 2 cosh � ta−tbB ��

2

abG2 �ea−b
B �a−rhb−rh �

rh
B + e b−a

B � b−rha−rh �
rh
B + 2 cosh � ta+tbB ��

2 .

(4.8)

For µ = 0 this expression reproduces the corresponding expression from [40] and as

we have seen in the previous Section 3 does not admit the finite limit for rh = 0.
To get the limit rh → 0 of the regularized entanglement entropy SI,reg, we take

the limit rh → 0 in the expression (4.8), and then find the regularized entanglement

entropy for zero mass by finding extremum of the expression Sreg,0 changing a and

ta. Sreg,0 is given as

Sreg,0 = lim
rh→0

Sreg,rh = 2⇡a2

G
+ c

6
logRreg,0, (4.9)

where

Rreg,0 ≡ Rreg�
rh→0
= 16B4

0 cosh
2 � ta

B0
� cosh2 � tb

B0
� �ea−b

B0 + e b−a
B0 − 2 cosh � ta−tbB0

��2
G2 �ea−b

B0 + e b−a
B0 + 2 cosh � ta+tbB0

��2 ,

B0 = µG. (4.10)

Extremizing on ta at large tb, tb →∞ we get that ta = tb and at large tb, tb

Rreg,0 ≈ 4B4
0

G2
�cosh�a − b

B0
� − 1�2 .

Assuming a, b > B0 we have

S0,reg,apr ≈ 2⇡a2

G
+ c

6
log �4G2µ4 cosh�a − b

B0
− 1�2� . (4.11)

SI,reg�
M=0 ≈ 2⇡a2

G
+ c

6
log �4G2µ4 cosh�a − b

µG
− 1�2� . (4.12)

Extremizing (4.12) on a we get

c sinh �a−bGµ �
3µ�cosh �a−bµ � − 1� + 4⇡a = 0. (4.13)

Finding solution of this equation numerically we get the dependence of SI,reg,rh=0 on
regularization parameter µ, Fig.9 We see, as should be, this expression is singular

for µ→ 0.
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We  consider evaporation of the Schwarzschild black hole 
and note that, generally speaking,  an island  doesn't 
provide a bounded entanglement entropy in the end of the 
black hole evaporation.

Conclusion

Despite the fact that including the island and the extremization about its 
location results in  saturation of  the entropy for the eternal black hole,  the 
evaporating of black hole ends up by unbounded increasing of the entropy.

Entropy increases even beyond the Planck scale



Possible exits out

Conclusion

Work out of s-mode approximation

Take into account back reaction

Take into account modifications of gravity 
   (quantum gravity corrections,  string corrections)

More pessimistic expectation: island formula works only for non-flat cases 
                                                                                                 For 2-dim cases



General remarks

The black hole information problem has been considered as a particular 
example of the fundamental irreversibility problem in statistical physics.

A quantum mechanical explanation for the emergence of the second law of thermo-
dynamics in macroscopic systems

The Bogoliubov equation for the one-particle distribution function in the kinetic theory of 
gases is an analog of the extrimization equation for the entanglement entropy with 
island 

N.N. Bogoliubov, Problems of dynamical theory in statistical physics, 1946

Th. Nieuwenhuizen, I.Volovich, 0507272

The Bogoliubov method of derivation of the Boltzmann kinetic equation  has been  
suggested to generalized to quantum gravity to get a quantum gravity analog of the 
Boltzmann equation.



Thank you for your attention!

Happy birthday for heroes of the day!


