# Quantum Trace Formulae for Integrals of the Hyperbolic RS model 

Gleb Arutyunov<br>II. Institute for Theoretical Physics<br>Hamburg University

## Classical Integrability

$$
\begin{gathered}
\dot{L}=[L, M] \\
I_{k}=\operatorname{Tr} L^{k} \quad \longleftarrow \quad \text { Integrals of motion } \\
L=\left(\begin{array}{ccc}
x_{1} & & \\
& x_{2} & \\
& & \ddots \\
\\
& & x_{N}
\end{array}\right)
\end{gathered}
$$

Various representations for integrals of motion

$$
\begin{aligned}
& I_{k}=\operatorname{Tr} L^{k}=\sum_{i=1}^{N} x_{i}^{k} \longleftarrow \quad \text { power sums } \\
& \mathcal{S}_{k}=\sum_{i_{1}<i_{2}<\ldots<i_{k}} x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}} \longleftarrow \quad \text { elementary symmetric functions } \\
& \operatorname{det}(L-\zeta \mathbb{1})=\sum_{k=0}^{N}(-\zeta)^{N-k} \mathcal{S}_{k}, \quad \delta_{0}=1
\end{aligned}
$$

## Outline

- Quantum trace formulae for integrals $I_{k}$ of the hyperbolic Ruijsenaars-Schneider model
- Classical Heisenberg double and Poisson reduction
- Quantization
- Relation of $I_{k}$ to Macdonald operators


## Baxterisation of quantum R-matrix structures

with Rob Klabbers \& Enrico Olivucci, I902.06755 [hep-th]

## Result

## Hyperbolic Ruijsenaars-Schneider Model

$Q_{i}=e^{q_{i}}$, where $q_{i}, i=1, \ldots, N$ are coordinates

$$
H=\frac{1}{2} \sum_{i=1}^{N}\left(b_{i}^{1 / \omega} e^{p_{i}}+b_{i}^{\omega} e^{-p_{i}}\right),
$$

$$
b_{i}^{\omega}=\prod_{a \neq i}^{N} \frac{Q_{a}-\omega Q_{i}}{Q_{a}-Q_{i}}, \quad \omega=e^{-\gamma}
$$

coupling constant
Performing a canonical transformation

$$
q_{i} \rightarrow q_{i}, \quad p_{i} \rightarrow p_{i}+\frac{1}{2} \log \frac{b_{i}^{\omega}}{b_{i}^{1 / \omega}}
$$

together with $\gamma \rightarrow i \gamma$, the Hamiltonian turns into

$$
H=\sum_{i=1}^{N} \prod_{j \neq i}^{N} \sqrt{1+\frac{\sin ^{2} \frac{\gamma}{2}}{\sinh ^{2} \frac{1}{2} q_{i j}}} \cosh p_{i}
$$

Quantum theory

$$
H=\sum_{j=1}^{N} b_{j} \top_{j}, \quad \quad \top_{j}=e^{-\hbar \frac{\partial}{\partial q_{j}}}, \quad b_{j} \equiv b_{j}^{\omega}
$$

On smooth functions $f\left(Q_{1}, \ldots, Q_{N}\right)$ the operator $\top_{j}$ acts as

$$
\left(\top_{j} f\right)\left(Q_{1}, \ldots, Q_{N}\right)=f\left(Q_{1}, \ldots, q Q_{j}, \ldots Q_{N}\right) \quad q=e^{-\hbar}
$$

Commutative family is given by a set $\left\{\mathcal{S}_{k}\right\}$ of Macdonald operators

## Quantum trace formulae for hyperbolic RS model

## Quantum trace formulae

Quantum version of $I_{k}=\operatorname{Tr} L^{k}$

$$
I_{k}^{ \pm}=\operatorname{Tr}_{12}\left(C_{12}^{t_{2}} L_{1} \bar{R}_{\lambda 1}^{t_{2}} R_{ \pm 12}^{t_{2}} L_{1} \ldots L_{1} \bar{R}_{21}^{t_{2}} R_{ \pm 12}^{t_{2}} L_{1}\right)
$$



Quantum $R$-matrices


$$
I_{k}^{ \pm} I_{m}^{ \pm}=I_{m}^{ \pm} I_{k}^{ \pm}, \quad I_{k}^{ \pm} I_{m}^{\mp}=I_{m}^{\mp} I_{k}^{ \pm}
$$

In the classical limit $R, \bar{R} \rightarrow \mathbb{1}$

$$
I_{k}^{ \pm} \rightarrow \sum_{i, j=1}^{N} \operatorname{Tr}\left(E_{i j} L^{k}\right) \operatorname{Tr}\left(E_{i j}\right)=\operatorname{Tr}\left(\sum_{i=1}^{N} E_{i i} L^{k}\right)=\operatorname{Tr} L^{k}
$$

## Derivation

Consider $\operatorname{Fun}(G \times G)$
$A, B \in G=\operatorname{GL}(N, \mathbb{C})$

$$
\begin{aligned}
& \left\{A_{1}, A_{2}\right\}=-\varepsilon_{-} A_{1} A_{2}-A_{1} A_{2} \varepsilon_{+}+A_{1} \varepsilon_{-} A_{2}+A_{2} \varepsilon_{+} A_{1}, \\
& \left\{A_{1}, B_{2}\right\}=-\varepsilon_{-} A_{1} B_{2}-A_{1} B_{2} \varepsilon_{-}+A_{1} \varepsilon_{-} B_{2}+B_{2} \varepsilon_{+} A_{1}, \\
& \left\{B_{1}, A_{2}\right\}=-\varepsilon_{+} B_{1} A_{2}-B_{1} A_{2} \varepsilon_{+}+B_{1} \varepsilon_{-} A_{2}+A_{2} \varepsilon_{+} B_{1}, \\
& \left\{B_{1}, B_{2}\right\}=-\tau_{-} B_{1} B_{2}-B_{1} B_{2} \tau_{+}+B_{1} \varepsilon_{-} B_{2}+B_{2} \varepsilon_{+} B_{1} .
\end{aligned}
$$

$$
\begin{aligned}
& \tau_{+}=+\frac{1}{2} \sum_{i=1}^{N} E_{i i} \otimes E_{i i}+\sum_{i<j}^{N} E_{i j} \otimes E_{j i} \\
& \tau_{-}=-\frac{1}{2} \sum_{i=1}^{N} E_{i i} \otimes E_{i i}-\sum_{i>j}^{N} E_{i j} \otimes E_{j i}
\end{aligned}
$$

$(A, B)$ monodromies of a flat connection on a punctured torus

If $G$ is a Poisson-Lie group with the Sklyanin bracket

$$
\left\{h_{1}, h_{2}\right\}=-\left[\varepsilon_{ \pm}, h_{1} h_{2}\right]
$$

then its adjoint action on the Heisenberg double

$$
A \rightarrow h A h^{-1}, \quad B \rightarrow h B h^{-1}
$$

is Poisson map. The corresponding (non-abelian) moment map is

$$
m=B A^{-1} B^{-1} A
$$

Fix the moment map to the following value

where $n$ is the Lie algebra element $n=\mathrm{e} \otimes \mathrm{e}^{t}-\mathbb{1}, \quad \mathrm{e}^{t}=\underbrace{(1, \ldots, 1)}_{N}$

One needs to solve the following matrix equation (the moment map equation)

$$
B A^{-1} B^{-1} A=\omega \mathbb{1}+\beta \mathrm{e} \otimes \mathrm{e}^{t} \quad \omega=e^{-\gamma}, \quad \beta=-e^{-\gamma} \frac{1-e^{N \gamma}}{N}
$$

## Special parametrisation

$$
\begin{aligned}
& A=T Q T^{-1} \\
& B=U P^{-1} T^{-1}
\end{aligned}
$$

Frolov \& G.A. '98
$Q, P$ are diagonal matrices
$T, U \in G$ are two Frobenius matrices, i.e. they satisfy the Frobenius condition

Introducing $W=T^{-1} U \in F$,

$$
T \mathrm{e}=\mathrm{e}, \quad U \mathrm{e}=\mathrm{e}
$$

## Poisson Reduction

## Solution

$$
W_{i j}(Q)=\frac{\prod_{a \neq i}^{N}\left(Q_{j}^{-1}-\omega Q_{a}^{-1}\right)}{\prod_{a \neq j}^{N}\left(Q_{j}^{-1}-Q_{a}^{-1}\right)}
$$

Dimension of the reduced phase space

$$
\underbrace{2 N^{2}}_{\begin{array}{c}
\operatorname{dim} \text { of } \\
\text { initial phase space }
\end{array}}-\underbrace{\left(N^{2}-1\right)}_{\text {constraints }}-\underbrace{\operatorname{dim}_{\mathbb{C}} \digamma}_{\text {stabilizer }}=2 N^{2}-\left(N^{2}-1\right)-(N-1)^{2}=2 N, \quad \text { coordinates }(P, Q)
$$

Lax matrix

$$
L=W(Q) P^{-1}
$$

Frobenius-invariant extension of $L$ to the Heisenberg double

Note that


## Poisson Reduction

## Dirac brackets

$$
\left\{L_{1}, L_{2}\right\}=r_{12} L_{1} L_{2}-L_{1} L_{2} \underline{\underline{r}}{ }_{12}+L_{1} \bar{r}_{21} L_{2}-L_{2} \bar{r}_{12} L_{1}
$$

$$
Q_{i j}=Q_{i}-Q_{j}
$$

If we parametrise $P_{i}=e^{p_{i}} Q_{j}=e^{q_{j}}$, then brackets between $p_{i}$ and $q_{j}$ are canonical

$$
\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]=0
$$

Two more equations involving $r$ and $\bar{r}$

$$
\begin{aligned}
& {\left[\bar{r}_{12}, \bar{r}_{13}\right]+\left\{\bar{r}_{12}, p_{3}\right\}-\left\{\bar{r}_{13}, p_{2}\right\}=0,} \\
& {\left[r_{12}, \bar{r}_{13}\right]+\left[r_{12}, \bar{r}_{23}\right]+\left[\bar{r}_{13}, \bar{r}_{23}\right]+\left\{r_{12}, p_{3}\right\}=0}
\end{aligned}
$$

Gervais-Neveu-Felder equation

$$
\left[\underline{r}_{12}, \underline{r}_{13}\right]+\left[\underline{r}_{12}, \underline{r}_{23}\right]+\left[\underline{r}_{13}, \underline{r}_{23}\right]+\left\{\underline{r}_{12}, p_{3}\right\}-\left\{\underline{r}_{13}, p_{2}\right\}+\left\{\underline{r}_{23}, p_{1}\right\}=0
$$

$$
\text { Quantities } I_{k}=\operatorname{Tr} L^{k} \text { are in involution! }
$$

$$
\begin{aligned}
& r=\sum_{i \neq j}^{N}\left(\frac{Q_{j}}{Q_{i j}} E_{i i}-\frac{Q_{i}}{Q_{i j}} E_{i j}\right) \otimes\left(E_{j j}-E_{j i}\right), \\
& \bar{r}=\sum_{i \neq j}^{N} \frac{Q_{i}}{Q_{i j}}\left(E_{i i}-E_{i j}\right) \otimes E_{j j}, \\
& \underline{r}=\sum_{i \neq j}^{N} \frac{Q_{i}}{Q_{i j}}\left(E_{i j} \otimes E_{j i}-E_{i i} \otimes E_{j j}\right), \quad \underline{r}_{12}=r_{12}+\bar{r}_{21}-\bar{r}_{12}
\end{aligned}
$$

## Quantum Heisenberg Double

$$
\begin{aligned}
& \mathscr{R}_{-}^{-1} A_{2} \mathscr{R}_{+} A_{1}=A_{1} \mathscr{R}_{-}^{-1} A_{2} \mathscr{R}_{+}, \\
& \mathscr{R}_{-}^{-1} B_{2} \mathscr{R}_{+} A_{1}=A_{1} \mathcal{R}_{-}^{-1} B_{2} \mathscr{R}_{-}, \\
& \mathscr{R}_{+}^{-1} A_{2} \mathscr{R}_{+} B_{1}=B_{1} \mathscr{R}_{-}^{-1} A_{2} \mathscr{R}_{+}, \\
& \mathscr{R}_{-}^{-1} B_{2} \mathcal{R}_{+} B_{1}=B_{1} \mathcal{R}_{-}^{-1} B_{2} \mathcal{R}_{+}, \\
& \mathscr{R}_{+12}=\mathscr{R}_{21}, \quad \mathfrak{R}_{-12}=\mathscr{R}_{12}^{-1} \\
& \mathscr{R}_{+21} \mathcal{R}_{-12}=\mathbb{1} \\
& \mathfrak{R}=\sum_{i \neq j}^{n} E_{i i} \otimes E_{j j}+e^{\hbar / 2} \sum_{i=1}^{n} E_{i i} \otimes E_{i i}+\left(e^{\hbar / 2}-e^{-\hbar / 2}\right) \sum_{i>j}^{n} E_{i j} \otimes E_{j i}
\end{aligned}
$$

Quantum RS model should be obtained from the double by "quantum" Poisson reduction

## Quantization

Assume that the matrices $R$ and $\bar{R}$ for the hyperbolic RS model satisfy the system of equations

$$
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12} \quad \longleftarrow \quad\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]=0
$$

$$
p_{j} \rightarrow P_{j}=e^{\hbar \frac{\partial}{\partial q_{j}}}
$$

$$
\left.\begin{array}{rl}
R_{12} \bar{R}_{13} \bar{R}_{23} & =\bar{R}_{23} \bar{R}_{13} P_{3} R_{12} P_{3}^{-1}, \\
\bar{R}_{12} P_{2} \bar{R}_{13} P_{2}^{-1} & =\bar{R}_{13} P_{3} \bar{R}_{12} P_{3}^{-1}
\end{array}\right] \quad \begin{aligned}
& {\left[\begin{array}{l}
{\left[\bar{r}_{12}, \bar{r}_{13}\right]+\left\{\overline{\bar{T}}_{12}, p_{3}\right\}-\left\{\bar{r}_{13}, p_{2}\right\}=0,} \\
{\left[r_{12}, \bar{r}_{13}\right]+\left[r_{12}, \bar{r}_{23}\right]+\left[\bar{r}_{13}, \bar{r}_{23}\right]+\left\{r_{12}, p_{3}\right\}=0}
\end{array}\right.}
\end{aligned}
$$

Since $r^{2}=-r$, for $R$ we can take $R=\exp \hbar r$

$$
\begin{aligned}
& R=\exp \hbar r \\
& R_{+}=\mathbb{1}+(1-q) \sum_{i \neq j}^{N}\left(\frac{Q_{j}}{Q_{i j}} E_{i i}-\frac{Q_{i}}{Q_{i j}} E_{i j}\right) \otimes\left(E_{j j}-E_{j i}\right)\left(\frac{Q_{j}}{Q_{i j}} E_{i i}-\frac{Q_{i}}{Q_{i j}} E_{i j}\right) \otimes\left(E_{j j}-E_{j i}\right) \\
& R_{-}=\mathbb{1}-\left(1-q^{-1}\right) \sum_{i \neq j}^{N}\left(E_{i i}-E_{i j}\right) \otimes\left(\frac{Q_{i}}{Q_{i j}} E_{j j}-\frac{Q_{j}}{Q_{i j}} E_{j i}\right) \\
& R_{+21} R_{-12}=\mathbb{1} \longleftarrow \text { precisely in the same way as their non-dynamical counterparts: } \\
& R_{ \pm 12} \bar{R}_{13} \bar{R}_{23}=\bar{R}_{23} \bar{R}_{13} P_{3} R_{ \pm 12} P_{3}^{-1} \\
& \bar{R}=\mathbb{1}-\sum_{i \neq j}^{N} \frac{q Q_{i}-Q_{i}}{q Q_{i}-Q_{j}}\left(E_{i i}-E_{i j}\right) \otimes E_{j j}
\end{aligned}
$$

## Quantization

Introduce

$$
\underline{R}_{12}=\bar{R}_{12}^{-1} R_{12} \bar{R}_{21}, \quad \longleftarrow \quad \text { quantisation of } \underline{r}
$$

$$
\begin{aligned}
& \underline{R}_{+}=\mathbb{1}+(1-q) \sum_{i \neq j}^{N} \frac{Q_{i}}{Q_{i j}}\left(E_{i j} \otimes E_{j i}-E_{i i} \otimes E_{j j}\right), \\
& \underline{R}_{-}=\mathbb{1}-\left(1-q^{-1}\right) \sum_{i \neq j}^{N} \frac{Q_{j}}{Q_{i j}}\left(E_{i j} \otimes E_{j i}-E_{i i} \otimes E_{j j}\right)
\end{aligned}
$$

These matrices satisfy the Gervais-Neveu-Felder equation

$$
\underline{R}_{ \pm 12} P_{2}^{-1} \underline{R}_{ \pm 13} P_{2} \underline{R}_{ \pm 23}=P_{1}^{-1} \underline{R}_{ \pm 23} P_{1} \underline{R}_{ \pm 13} P_{3}^{-1} \underline{R}_{ \pm 12} P_{3}
$$

Quantum $L$-operator algebra

$$
\begin{aligned}
& R_{+12} L_{2} \bar{R}_{12}^{-1} L_{1}=L_{1} \bar{R}_{21}^{-1} L_{2} \underline{R}_{+12} \\
& R_{-12} L_{2} \bar{R}_{12}^{-1} L_{1}=L_{1} \bar{R}_{21}^{-1} L_{2} \underline{R}_{-12}
\end{aligned}
$$

Quantum $L$-operator

$$
L=\sum_{i, j=1}^{N} \frac{Q_{i}-\omega Q_{i}}{Q_{i}-\omega Q_{j}} b_{j} \top_{j} E_{i j}, \quad b_{j}=\prod_{a \neq j}^{N} \frac{\omega Q_{j}-Q_{a}}{Q_{j}-Q_{a}}
$$

where $\omega=e^{-\gamma}$ and $T_{j}$ is the operator $T_{j}=e^{-\hbar \frac{\partial}{\partial q_{j}}}$. On smooth functions $f\left(Q_{1}, \ldots, Q_{N}\right)$ it acts as

$$
\left(\top_{j} f\right)\left(Q_{1}, \ldots, Q_{N}\right)=f\left(Q_{1}, \ldots, q Q_{j}, \ldots Q_{N}\right)
$$

## Quantization

Quantum trace formulae

$$
\begin{array}{r}
I_{k}^{ \pm}=\operatorname{Tr}_{12}\left(C_{12}^{t_{2}} L_{1} \bar{R}_{21}^{t_{2}} R_{ \pm 12}^{t_{2}} L_{1} \ldots L_{1} \bar{R}_{21}^{t_{2}} R_{ \pm 12}^{t_{2}} L_{1}\right) \quad \text { quantisation of } I_{k}=\operatorname{Tr} L^{k} \\
\text { generalize the formula for the rational case } \\
\text { Frolov \& G.A., } 98
\end{array}
$$



$$
\mathcal{S}_{k}=\omega^{\frac{1}{2} k(k-1)} \sum_{\substack{J \subset\{1, \ldots, N\} \\|J|=k}} \prod_{\substack{i \in J \\ j \notin J}} \frac{\omega Q_{i}-Q_{j}}{Q_{i}-Q_{j}} \prod_{i \in J} \top_{i}
$$

Generating function

$$
: \operatorname{det}(L-\zeta \mathbb{1}):=\sum_{k=0}^{N}(-\zeta)^{N-k} \mathcal{S}_{k}, \quad \delta_{0}=1
$$

Determinant formulae

$$
\begin{gathered}
\delta_{k}=\frac{1}{[k!]_{q^{ \pm 1}}}\left|\begin{array}{ccccc}
I_{1}^{ \pm} & {[k-1]_{q^{ \pm 1}}} & 0 & \cdots & 0 \\
I_{2}^{ \pm} & I_{1}^{ \pm} & {[k-2]_{q^{ \pm 1}}} & \cdots & 0 \\
\vdots & \vdots & \cdot & \cdots & \vdots \\
I_{k-1}^{ \pm} & I_{k-2}^{ \pm} & \cdot & \cdots & {[1]_{q^{ \pm 1}}} \\
I_{k}^{ \pm} & I_{k-1}^{ \pm} & \cdot & \cdots & I_{1}^{ \pm}
\end{array}\right| \\
I_{k}^{ \pm}=\left|\begin{array}{ccccc}
\mathcal{S}_{1} & 1 & 0 & \cdots & 0 \\
{[2]_{q^{ \pm 1}} \mathcal{S}_{2}} & \mathcal{S}_{1} & 1 & 0 & \cdots \\
\vdots & \vdots & \cdots & \cdots & 1 \\
{[k]_{q^{ \pm 1}} \mathcal{S}_{k}} & \delta_{k-1} & \mathcal{S}_{k-2} & \cdots & \delta_{1}
\end{array}\right|
\end{gathered}
$$

$$
[k]_{q}=\sum_{n=0}^{k-1} q^{n}=\frac{1-q^{k}}{1-q}
$$

$$
\uparrow_{q \text {-number }[k]_{q}}
$$

$$
q=e^{-\hbar}
$$

Quantum $L$-operator

$$
L(\lambda)=L-\frac{\omega e^{\hbar / 2}}{\lambda} \underbrace{Q^{-1} L Q}_{\text {gauge equivalent }}
$$

Quantum $L$-operator algebra

$$
R_{12}(\lambda, \mu) L_{2}(\mu) \bar{R}_{12}^{-1}(\lambda) L_{1}(\lambda)=L_{1}(\lambda) \bar{R}_{21}^{-1}(\mu) L_{2}(\mu) \underline{R}_{12}(\lambda, \mu)
$$

$$
\begin{aligned}
R(\lambda, \mu) & =\frac{\lambda e^{\hbar / 2} R_{+}-\mu e^{-\hbar / 2} R_{-}}{\lambda-\mu}-\frac{e^{\hbar / 2}-e^{-\hbar / 2}}{e^{\hbar / 2} \lambda-1} X_{12}+\frac{e^{\hbar / 2}-e^{-\hbar / 2}}{e^{-\hbar / 2} \mu-1} X_{21} \quad X=\sum_{i, j=1}^{N} E_{i j} \otimes E_{j j} \\
\bar{R}(\lambda) & =\bar{R}-\frac{e^{\hbar}-1}{e^{\hbar / 2} \lambda-1} X_{12} .
\end{aligned}
$$

Compatibility

$$
R_{12}(\lambda, \mu) R_{13}(q \lambda, q \tau) R_{23}(\mu, \tau)=R_{23}(q \mu, q \tau) R_{13}(\lambda, \tau) R_{12}(q \lambda, q \mu)
$$

$$
\begin{aligned}
& R_{12}(\lambda, \mu) \bar{R}_{13}(q \lambda) \bar{R}_{23}(\mu)=\bar{R}_{23}(q \mu) \bar{R}_{13}(\lambda) P_{3} R_{12}(q \lambda, q \mu) P_{3}^{-1} \\
& \quad \bar{R}_{12}(\lambda) P_{2} \bar{R}_{13}(q \lambda) P_{2}^{-1}=\bar{R}_{13}(\lambda) P_{3} \bar{R}_{12}(q \lambda) P_{3}^{-1}
\end{aligned}
$$

Semi-classical expansion

$$
R(\lambda, \mu)=\mathbb{1}+\hbar r(\lambda, \mu)+o(\hbar), \quad \bar{R}(\lambda)=\mathbb{1}+\hbar r(\lambda)+o(\hbar)
$$

$$
\begin{aligned}
r_{12}(\lambda, \mu)= & \frac{\lambda r_{12}+\mu r_{21}}{\lambda-\mu}+\frac{\sigma_{12}}{\lambda-1}-\frac{\sigma_{21}}{\mu-1} \\
& +\left(\frac{1}{2} \frac{\lambda+\mu}{\lambda-\mu}-\frac{1}{\lambda-1}+\frac{1}{\mu-1}\right) \mathbb{1} \otimes \mathbb{1}
\end{aligned}
$$

$$
\bar{r}_{12}(\lambda)=\bar{r}_{12}+\frac{\sigma_{12}}{\lambda-1}-\frac{\mathbb{1} \otimes \mathbb{1}}{\lambda-1}
$$

## Commutative integrals

Theorem

$$
\operatorname{Tr} L(\lambda) \operatorname{Tr} L(\mu)=\operatorname{Tr} L(\mu) \operatorname{Tr} L(\lambda)
$$

Quantum spectral curve

$$
\begin{aligned}
& : \operatorname{det}(L(\lambda)-\zeta \mathbb{1}):=\sum_{k=0}^{N}(-\zeta)^{N-k} \mathcal{S}_{k}(\lambda) \\
& \mathcal{S}_{k}(\lambda)=\lambda^{-k}\left(\lambda-\omega^{k} e^{-\hbar / 2}\right)\left(\lambda-e^{-\hbar / 2}\right)^{k-1} \mathcal{S}_{k} \\
& \uparrow \prod_{\text {Macdonald operators }}
\end{aligned}
$$

## Future Directions

Poisson reduction procedure is a key tool!

Quantum Poisson reduction of the Heisenberg double
Extension to the Ruijsenaars-Schneider models with spin

## Thank You!

