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1 Quadratic Gravity

is a straightforward generalization of Einstein General Relativity. It is given by the action

A = A0 +A1 +A2 ,

where

A0 = Λ

∫
d4x
√
−G ,

A1 = −κ
6

∫
d4x
√
−GR , κ > 0 ,

A2 ≡ A2c1 +A2c2 +A2c3 =

∫
d4x
√
−G

(
c1R

2 + c2RµνR
µν + c3Rµν%σR

µν%σ
)
.

In four-dimensional space-time, the Gauss-Bonnet Lagrangian

√
−G

(
R2 − 4RµνR

µν +Rµν%σ R
µν%σ

)
is the total derivative. If we choose the coefficients c in to be

c1 = c3 = −1

2
c2 =

λ2

48
,

there is no a total derivative term in the normalized A2 action in this case.
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We study the possibility to define path integrals in quadratic gravity.

We expect the solution to the problem to be more straightforward and rigorous than

that in general relativity.

The point is, the Einstein action A1 is unbounded from below. Therefore,

exp {−A1}

cannot be consider as a density of a measure of functional integration and the Euclidean

path integrals of the form ∫
. . . exp {−A1} dG

are divergent.
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2 Invariance of the action and gauge-fixing

Consider the quadratic gravity action in FLRW metric

ds2 = N2(t) dt2 − a2(t) d~x2 , N(t) > 0 , a(t) > 0 .

In this case, action normalized to the unit space volume is written as

A ≡ A
V3

and the general coordinate invariance of the action is reduced to

its invariance under the group of diffeomorphisms (ϕ ∈ Diff (R+)) of the time coor-

dinate t.

Define the action of the diffeomorphism ϕ on the functions N(t) and a(t) as follows:

ϕN(t) =
(
ϕ−1(t)

)′
N
(
ϕ−1(t)

)
; ϕa(t) = a

(
ϕ−1(t)

)
.
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Instead of the laps and the scale factors,

it is convenient to use the functions f(t) and h(t) defined by the following equations:

(
f−1(t)

)′
=
N(t)

a(t)
, f−1(t) =

t∫
0

N(t̃)

a(t̃)
dt̃ , f−1(0) = 0 ;

h′(t) = N(t) , h(t) =

t∫
0

N(t̃) dt̃ , h(0) = 0 ,

with the transformation rules under the action of the diffeomorphism ϕ

(ϕf)−1(t) =

t∫
0

ϕN(t̄)

ϕa(t̄)
dt̄ =

ϕ−1(t)∫
0

N(t̃)

a(t̃)
dt̃ = f−1

(
ϕ−1(t)

)
≡
(
f−1 ◦ ϕ−1

)
(t) ;

(ϕh)(t) =

t∫
0

ϕN(t̄) dt̄ =

ϕ−1(t)∫
0

N(t̃) dt̃ = h
(
ϕ−1(t)

)
≡
(
h ◦ ϕ−1

)
(t) .

From the above equation, we have

ϕf = ϕ ◦ f
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The action is invariant under the group of diffeomorphisms:

A(f, h) = A (ϕf, ϕh) = A
(
ϕ ◦ f, h ◦ ϕ−1

)
.

In particular, we can choose the diffeomorphism ϕ to be

ϕ = h ,

therefore fixing the gauge.

Now

A = A(f, h) = A (h ◦ f, I) = A (g, I) ,

g(τ) = h (f(τ)) ,

and I is the identical function.

In the gauge chosen,

N(t) = 1 , a(t) = g′
(
g−1(t)

)
,

and the space-time metric is

ds2 = dt2 −
(
g′
(
g−1(t)

))2
d~x2 .

We call this gauge ”cosmological gauge”, and the time variable t ”cosmological time”.
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Another gauge that can be obtained if we choose,

ϕ = f−1 ,

It is the so-called ”conformal gauge” where the space-time metric looks like

ds2 =
(
g′(τ)

)2 [
dτ2 − d~x2

]
, N(τ) = a(τ) = g′(τ) ,

and the time variable τ is called ”conformal time”. It is related to the cosmological time t

that is considered the true physical time variable in the obvious way

τ = g−1(t) , t = g(τ) .
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In the conformal gauge, the action is written as

A = A (I, g) = A0 (I, g) +A1 (I, g) +A2 (I, g) ,

A0 (I, g) = Λ

∫ (
g′(τ)

)4
dτ ,

A1 (I, g) = −κ
∫ [(

g′′(τ)
)2 − d

dτ

(
g′′(τ) g′(τ)

)]
dτ ,

A2 (I, g) =
λ2

2

∫ (
g′′′(τ)

g′(τ)

)2

dτ .

– 8 –



3 Classical solutions

The Euler-Lagrange equation[
∂

∂g′
− d

dτ

∂

∂g′′
+

d2

dτ2

∂

∂g′′′

]
L = 0

gives

2Λ
(
g′
)3 − κ g′′′ + λ2

2

[
6

(g′′)2 g′′′

(g′)4 − 3
(g′′′)2

(g′)3 − 4
g′′ g(4)

(g′)3 +
g(5)

(g′)2

]
= 0 .

For the solutions of the form

g′(τ) = σ τα , σ = const ,

the equation turns into

2Λσ4 τ3α − κσ2 α (α− 1) τα−2 + 3λ2 α (α− 1) (α+ 1) τ−α−4 = 0 .
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We consider the solutions of the following types:

1. α = 0 , Λ = 0 . The solution describes universe with a constant scale factor a .

2. α = 1 , Λ = 0 .

g′cl(τ) = σ τ , gcl(τ) =
1

2
σ τ2 , g−1

cl (t) =

√
2 t

σ
,

the classical scale factor is

acl(t) = g′cl
(
g−1
cl (t)

)
=
√

2σ t .

It corresponds to the birth of the universe from a point (a(0) = 0) .
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3. α = −1 , σ2 = κ
Λ .

g′cl(τ) = σ τ−1.

The conformal time τ is related to the cosmological time t by the equation

t = gcl(τ) = σ

τ∫
τ0

τ−1 = σ ln

∣∣∣∣ ττ0

∣∣∣∣ .
Consider the conformal time in the region −∞ < τ < 0 ,

and assume the constants σ and τ0 to be negative:

−∞ < τ0 < τ < 0 , σ < 0 .

Note that t > 0 in this case.

Now the classical scale factor is

acl(t) = g′cl
(
g−1
cl (t)

)
= σ

(
τ0 exp{ t

σ
}
)−1

=
σ

τ0
exp{− t

σ
} =

∣∣∣∣ στ0

∣∣∣∣ exp{ t
|σ|
}.
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4 Path integrals measure

Now we can consider path integrals in the theory∫
F (g) exp{−A(g)} dg

as the integrals of the form ∫
F (g) exp{−A1(g)}µ(dg) ,

over the functional measure

µλ(dg) = exp

{
−λ

2

2

∫ (
g′′′(τ)

g′(τ)

)2

dτ

}
dg .

If we substitute

q(τ) =
g′′(τ)

g′(τ)
,

we can rewrite the integral in the exponent in the measure density as

−λ
2

2

∫ (
g′′′(τ)

g′(τ)

)2

dτ

= −λ
2

2

∫ [
(q′(τ))2 + 2q′(τ)q2(τ) + q4(τ)

]
dτ = −λ

2

2

∫
(p′(τ))2 dτ ,

where p is given by the nonlinear nonlocal substitution

p(τ) = q(τ) +

τ∫
0

q2(τ1) dτ1 .
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The space of integration over the variable q is different from that over the variable p .

While the paths p(τ) form the space of all continuous functions on the interval [0, T ] ,

the paths q(τ) are continuous almost at all points of the interval but may have singularities

of the form

q(τ) ∼ 1

τ − τ∗j
at a finite number of points of the finite interval.

Nevertheless, we prove the one-to-one correspondence between the function g(τ) and

the Wiener variable p(τ) . It should be stressed that, in spite of the singular character of

the functions ξ(τ) , η(τ) , the function g(τ) is continuous.

Now the measure µλ(dg) written in terms of p(τ) is the Wiener measure w 1
λ

(dp) .

The function g(τ) is written as

g(τ) = σ

τ∫
0

|η(τ̄)| exp


τ̄∫

0

p(τ1) [1− p(τ1) η(τ1)] dτ1

 dτ̄ .

q(τ) = p(τ)− 1

η(τ)
,

η′(τ) = −1 + 2p(τ)η(τ)− p2(τ)η2(τ) .
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5 First order perturbative correction to the scale factor

The value of the scale factor at the moment of the cosmological time t is the functional on

the space of functions g

ag(t) = F (g) = g′
(
g−1(t)

)
.

The classical solution

acl(t) = g′cl
(
g−1
cl (t)

)
=
√

2σ t .

Now we define the scale factor averaged over the space of functions g as

< a(t) >g= Z−1

∫
g′
(
g−1(t)

)

× exp

κ
g−1(t)∫

0

(
g′′(τ1)

)2
dτ1 − κg′′(g−1(t)) g′(g−1(t))

µλ(dg) (5.1)

with the normalizing factor

Z =

∫
exp

κ
g−1(t)∫

0

(
g′′(τ1)

)2
dτ1 − κg′′(g−1(t)) g′(g−1(t))

µλ(dg) .
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Our ansatz consists in cutting off the upper limit in integrals for the action term A1 .

For the action term A2 entering the measure density, the cut off occurs automatically

due to the properties of the (Wiener) measure.

The ansatz ensures the causality of the theory.

To calculate the first nontrivial perturbative correction to acl(t) , we represent the

function g(τ) in terms of the function p(τ), and expand the integrand in the path integral

up to the terms O(p2) .

Now the first factor in the integrand is written as

g′
(
g−1(t)

)
= g′cl

(
g−1
cl (t)

)
+ σX + σ Y =

√
2σ t+ σX + σ Y ,

where X contains the terms of the order p1 and Y contains the terms of the order p2 .

After the cancellation of the same terms in the nominator and the denominator, the

second factor exp{−A1} gives (
1 + E +O

(
p2
))
.

Thus

< a(t) >=
√

2σ t+ σ

∫
{X × E + Y } w 1

λ
(dp) .

( ∼ 50

∫
)

Then we change the order of the ordinary and path integration and use the following

simple rules for Wiener integration:∫
p(τ1)w 1

λ
(dp) = 0 ,

∫
p(τ1) p(τ2)w 1

λ
(dp) =

1

λ2
min {τ1 , τ2} ,

with the result

< a(t) >=
√

2σ t

{
1 +

1

λ2

[
−59

63

(
2t

σ

) 3
2

+
11

120
κσ2

(
2t

σ

)2
]}

.

– 15 –



6 Conclusion

- We reformulate quadratic gravity in FLRW metric in terms of the new dynamical variables

and study the invariance of the theory under the group of diffeomorphisms of the time

coordinate.

- After fixing the gauge we find classical solutions of the different types.

One classical solution gives the power behavior of the scale factor (∼
√
t) ,

and the other leads to the exponential behavior of the scale factor (∼ exp{ct}) .
- We construct the path integrals measure that

appears to be equivalent to the Wiener measure,

and calculate the first nontrivial perturbative correction to the averaged scale factor.

The experience gained in quantum field theory prevents us from considering first order

perturbative results too seriously without an analysis of the other terms. So, further studies

in this directions are needed.
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The measure is quasi-invariant under the action of the group of diffeomorphisms Diff3

acting as a composition from the left

χ g = χ ◦ g .

That is,

µχ(dg) ≡ µ (d (χg)) = Pχ(g)µ(dg) ,

We believe that quasi-invariance of the measure and the explicit form of the Radon-

Nikodim derivative will be helpful.
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