

Congratulations !

Model with induced symmetry breaking chain

Eduard Boos SINP MSU

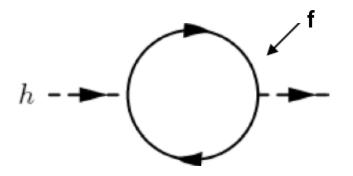
What is a scale of New physics?

Before the LHC start we knew a scale ~1 TeV from

No lose theorem!

From the unitariry of VV->VV (V: W,Z) amplitudes:

$$\left|\operatorname{Re}(a_{l})\right| \leq \frac{1}{2}$$

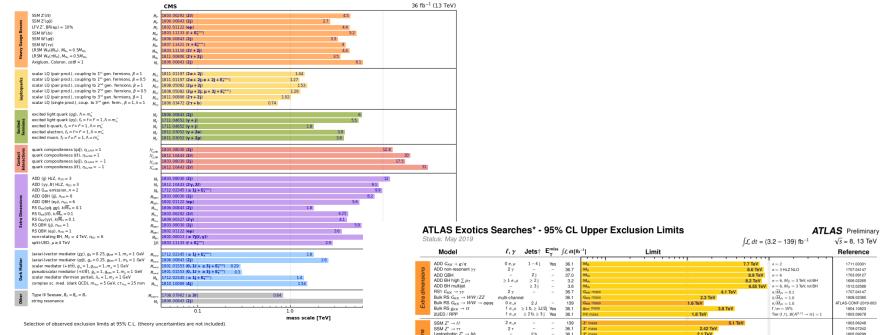

Either light Higgs
or $M_H \lesssim 710 \ {\rm GeV}$ New Physics at $\sqrt{s} \lesssim 1.2 \ {\rm TeV}$

The Higgs boson was found !

We do not have solid arguments for a new scale We do not know if a new scale (if exists) would be accessible at the LHC/FCC energies

SM itself is a renormalizable theory !

Correction to the Higgs mass from a loop contaning new particle


 $|\mathsf{M}^2_{\mathsf{H}}(\Lambda) - \mathsf{M}^2_{\mathsf{H}}(v)| \sim 3/(8\pi^2) y_f^2 \mathsf{M}_f^2 \ln(\Lambda^2/v^2) + \dots$

Correction is large for $M_f^2 \sim \Lambda^2$ if the coupling constant y_f is large

But a new fermion may have a very small coupling to the SM Higgs boson No solid arguments for a new scale

Many limits already in TeV energy range

Overview of CMS EXO results

Extra dimensio	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	≥3j –	37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	Ma, 6.9 TeV Ma, 8.2 TeV Ma, 8.5 TeV Gar, mass 2.3 TeV Gar, mass 2.3 TeV Gar, mass 1.6 TeV Star mass 1.8 TeV	$\begin{split} n &= 6 & \\ n &= 6, M_D = 3 \text{ TeV, rot BH} \\ n &= 6, M_D = 3 \text{ TeV, rot BH} \\ k/\overline{M}_{P_1} = 0.1 & \\ k/\overline{M}_{P_1} = 1.0 & \\ \Gamma/m = 15\% & \\ \text{Ter } (1,1), \mathcal{B}(A^{(1,1)} \to tt) = 1 \end{split}$	1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
Gauge bosons	$\begin{array}{llllllllllllllllllllllllllllllllllll$		139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	Z mass 5.1 FeV Z mass 2.42 FeV Z mass 2.1 TeV Z mass 3.0 TeV W mass 6.0 TeV V mass 5.0 TeV V mass 5.0 TeV V mass 2.00 TeV V mass 5.0 TeV We mass 2.00 TeV We mass 2.00 TeV We mass 0.3 TeV	$\label{eq:gv} \begin{split} &\Gamma/m = 1\% \\ &g_V = 3 \\ &g_V = 3 \\ &m(N_R) = 0.5 \text{ TeV}, g_L = g_R \end{split}$	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
CI	Ciqqqq – Ciℓℓqq 2 e,μ Ciℓℓtt ≥1 e,μ	2 j – – – ≥1 b,≥1 j Yes	37.0 36.1 36.1	A A A 2.57 TeV	21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $ G_{tc} = 4\pi$	1703.09127 1707.02424 1811.02305
MQ	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1 – 4 j Yes 1 – 4 j Yes 1 J,≤1 j Yes 1 b,0-1 J Yes	36.1 36.1 3.2 36.1	m _{mod} 1.55 TeV m _{mod} 1.67 TeV M. 700 GeV m _φ 3.4 TeV	$\begin{array}{l} g_{\gamma}{=}0.25, g_{\chi}{=}1.0, m(\chi) = 1 \; {\rm GeV} \\ g{=}1.0, m(\chi) = 1 \; {\rm GeV} \\ m(\chi) < 150 \; {\rm GeV} \\ y = 0.4, \lambda = 0.2, m(\chi) = 10 \; {\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
DT		≥ 2 j Yes ≥ 2 j Yes 2 b - 2 b Yes	36.1 36.1 36.1 36.1	LQ mass 1.4 TeV LQ mass 1.55 TeV LQ ⁴ mass 1.03 TeV LQ ⁴ mass 970 GeV	$\begin{split} \beta &= 1 \\ \beta &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^v \to b\tau) &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^d \to t\tau) &= 0 \end{split}$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks		nel	36.1 36.1 36.1 79.8 20.3	Timus 1.37 TeV Bimas 1.44 TeV Yunas 1.44 TeV Yunas 1.45 TeV Bimas 1.23 TeV Bimas 1.21 TeV Omass 60 GeV	$\begin{array}{l} & \mathrm{SU}(2) \text{ doublet} \\ & \mathrm{SU}(2) \text{ doublet} \\ & \mathcal{B}(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3} Wt) = 1 \\ & \mathcal{B}(Y \rightarrow Wb) = 1, \ c_R(Wb) = 1 \\ & \kappa_B = 0.5 \end{array}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited	$\begin{array}{llllllllllllllllllllllllllllllllllll$	2 j - 1 j - 1 b, 1 j - 	139 36.7 36.1 20.3 20.3	4) mass 6.7 TeV 4) mass 5.3 TeV 4/ mass 2.6 TeV 1/ mass 2.6 TeV 1/ mass 3.0 TeV 1/ mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw $1 e_{\nu}\mu$ LRSM Majaraa y 2μ Higgs triplet $H^{+\pm} \rightarrow (T$ $2.3.4 e_{\nu}\mu$ (T Multi-charged particles $-$ Multi-charged particles $-$ Water and the main of the any Michae area for the set of t	√s = 13 TeV full data	79.8 36.1 36.1 20.3 36.1 34.4	NP mass 560 GeV Nerman 870 GeV Nerman 870 GeV Nerman 870 GeV Nerman 102 GeV Nerman 1.22 TeV Nerman 1.22 TeV 100 ⁻¹ 1	$\begin{split} m(W_{\mathcal{B}}) &= 4.1 \text{ TeV}, g_L = g_R \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_{L^{-1}}^{t-1} \to \ell \tau) = 1 \\ \text{DY production}, g = 5e \\ \text{DY production}, g = 1 g_D, \text{spin } 1/2 \\ \text{Mass scale [TeV]} \end{split}$	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130

1711.03301 1707.04147

*Only a selection of the available mass limits on new states or phenomena is shown +Small-radius (large-radius) jets are denoted by the letter j (J).

Scales

Plank Mass ~ 10¹⁹ GeV

Grand Unification scale ~10¹⁵ - 10¹⁶ GeV ?

Neutrino physics (see-saw) scale ~ 10^{12} - 10^{13} GeV ?

SM vacuum metastablity scale $\sim 10^{10} - 10^{11}$ GeV ?

Some BSM models, some SUSY scenarios $\sim 10^3 - 10^4 \text{ GeV}$?

EW scale (v_{SM}) ~10² GeV

The SM Lagrangian $L_{\Phi} = D_{\mu} \Phi^{\dagger} D^{\mu} \Phi - \mu^2 \Phi^{\dagger} \Phi - \lambda (\Phi^{\dagger} \Phi)^4$

in terms of the fields:

$$W_{\mu}^{\pm} = \left(W_{\mu}^{1} \mp iW_{\mu}^{2}\right)/\sqrt{2}$$

$$W_{\mu}^{3} = Z_{\mu}\cos\theta_{W} + A_{\mu}\sin\theta_{W}$$

$$\Phi = \frac{1}{\sqrt{2}}\begin{pmatrix}0\\v+h(x)\end{pmatrix}$$

$$\Psi_{\mu}^{2} < 0$$

The diagonal mass matrix -> physics states with definite masses

 $M_W = M_Z \cos \theta_W$

$$L_{H} = \frac{1}{2} (\partial^{\mu} h) (\partial_{\mu} h) + \frac{M_{h}^{2}}{2} h^{2} - \frac{M_{h}^{2}}{2v} h^{3} - \frac{M_{h}^{2}}{8v^{2}} h^{4} + (M_{W}^{2} W_{\mu}^{+} W^{-\mu} + \frac{1}{2} M_{Z}^{2} Z_{\mu} Z^{\mu}) \left(1 + \frac{h}{v}\right)^{2} - \sum_{f} m_{f} \bar{f} f \left(1 + \frac{h}{v}\right)$$

$$\mathbf{M}_{\mathbf{H}}^{\mathbf{2}} = \mathbf{2}\lambda\mathbf{v}^{\mathbf{2}} = -\mathbf{2}\mu^{\mathbf{2}}$$

Why the mass parameter μ^2 is negative?

Simple model

$$\begin{split} L &= (D_{\nu}^{(1)}H_{1})^{\dagger} (D^{(1)\nu}H_{1}) - \mu_{1}^{2}H_{1}^{\dagger}H_{1} - \lambda_{1}(H_{1}^{\dagger}H_{1})^{2} \\ &+ k_{12} \big(H_{1}^{\dagger}H_{1}\big) \big(H_{2}^{\dagger}H_{2}\big) \\ &+ (D_{\nu}^{(2)}H_{2})^{\dagger} (D^{(2)\nu}H_{2}) - \mu_{2}^{2}H_{2}^{\dagger}H_{2} - \lambda_{2}(H_{2}^{\dagger}H_{2})^{2} \\ &+ (D_{\nu}^{(2)}H_{2})^{\dagger} (D^{(2)\nu}H_{2}) - \mu_{2}^{2}H_{2}^{\dagger}H_{2} - \lambda_{2}(H_{2}^{\dagger}H_{2})^{2} \\ &\text{Consider the case} \quad \mu_{1}^{2} = 0, \quad \mu_{2}^{2} = -|\mu_{2}^{2}| < 0 \end{split}$$

Spontaneous symmetry breaking at the level 2 leads to appearing of the induced negative parameter

$$\mu_{1}^{2} = -k_{12} \cdot v_{2}^{2}/2$$
 (for $k_{12} > 0$)

Negative μ_1^2 leads to induced spontaneous symmetry breaking at the level 1

0612165, 0709.2750, 1103.2571, 1301.4224, 1306.2329 ...

Quadratic form: $2\lambda_1 v_1^2 \widetilde{h_1}^2 - 2k_{12} v_1 v_2 \widetilde{h_1} \widetilde{h_2} + 2\lambda_2 v_2^2 \widetilde{h_2}^2$

Mass eigenstates after diagonalizing the mass matrix

$$\begin{pmatrix} 2\lambda_1 v_1^2 & -k_{12} v_1 v_2 \\ -k_{12} v_1 v_2 & 2\lambda_2 v_2^2 \end{pmatrix} \text{ with } v_1 = \sqrt{\frac{k_{12}}{2\lambda_1}} v_2, \quad v_2 = \sqrt{\frac{4\lambda_1 | \mu_2^2 |}{4\lambda_1 \lambda_2 - k_{12}^2}} \\ m_{1,2}^2 = \left[\lambda_2 + \frac{k_{12}}{2} \mp \lambda_2 \sqrt{\left(1 - \frac{k_{12}}{2\lambda_2}\right)^2 + \frac{k_{12}}{2\lambda_1} \frac{k_{12}^2}{\lambda_2^2}} \right] v_2^2$$
For the case $\frac{k_{12}}{\lambda_1}, \frac{k_{12}}{\lambda_2} \ll 1$

$$m_2^2 = 2\lambda_2 v_2^2, \quad m_1^2 = k_{12} v_2^2$$

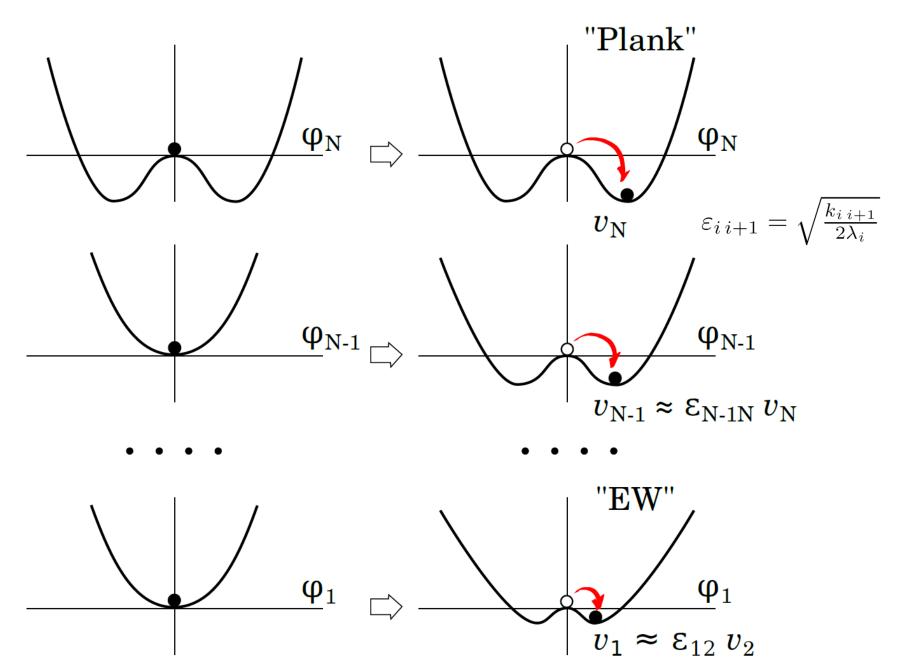
$$m_1^2 < < m_2^2$$

The model

)

$$\begin{split} L &= (D_{\nu}^{(1)}H_{1})^{\dagger}(D^{(1)\nu}H_{1}) - \mu_{1}^{2}H_{1}^{\dagger}H_{1} - \lambda_{1}(H_{1}^{\dagger}H_{1})^{2} (1 \\ &+ L_{Fields(1)} + k_{12}(H_{1}^{\dagger}H_{1})(H_{2}^{\dagger}H_{2}) \\ &+ (D_{\nu}^{(2)}H_{2})^{\dagger}(D^{(2)\nu}H_{2}) - \mu_{2}^{2}H_{2}^{\dagger}H_{2} - \lambda_{2}(H_{2}^{\dagger}H_{2})^{2} \\ &+ L_{Fields(2)} + k_{23}(H_{2}^{\dagger}H_{2})(H_{3}^{\dagger}H_{3}) \\ &\cdots \\ &+ (D_{\nu}^{(N-1)}H_{N-1})^{\dagger}(D^{(N-1)\nu}H_{N-1}) - \mu_{N-1}^{2}H_{N-1}^{\dagger}H_{N-1} \\ &- \lambda_{N-1}(H_{N-1}^{\dagger}H_{N-1})^{2} \\ &+ L_{Fields(N-1)} + k_{N-1,N}(H_{N-1}^{\dagger}H_{N-1})(H_{N}^{\dagger}H_{N}) \\ &+ (D_{\nu}^{(N)}H_{N})^{\dagger}(D^{(N)\nu}H_{N}) - \mu_{N}^{2}H_{N}^{\dagger}H_{N} - \lambda_{N}(H_{N}^{\dagger}N)^{2} \\ &+ L_{Fields(N)}, \end{split}$$

Let us assume

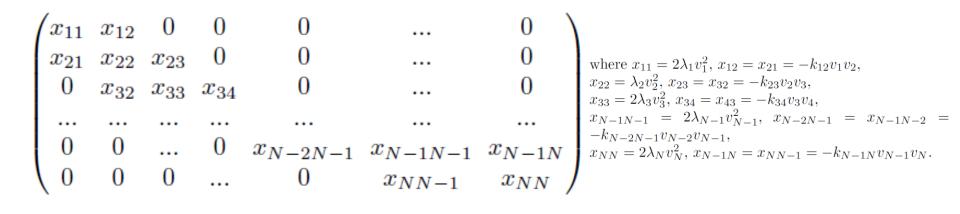

$$\mu_1^2 = \mu_2^2 = \ldots = \mu_{N-1}^2 = 0$$

$$\mu_N^2 \neq 0 \qquad \mu_N^2 = - \mid \mu_N^2$$

Small mixing parameters

$$\frac{k_{12}}{\lambda_1}, \ \frac{k_{12}}{\lambda_2}, \ \frac{k_{23}}{\lambda_2}, \ \frac{k_{23}}{\lambda_3}, \ \dots, \ \frac{k_{N-1N}}{\lambda_{N-1}} \ \frac{k_{N-1N}}{\lambda_N} \ll 1$$

Spontaneous symmetry breaking chain


After spontaneous symmetry breaking at the level N

$$m_N^2 \simeq 2\lambda_N v_N^2$$
$$m_{N-1}^2 \simeq k_{N-1N} v_N^2 \simeq \frac{k_{N-1N}}{2\lambda_N} m_N^2$$

Induced spontaneous breaking chain leads to

$$v_1^2 \simeq \frac{k_{12}}{2\lambda_1} \frac{k_{23}}{2\lambda_2} \dots \frac{k_{N-1N}}{2\lambda_{N-1}} v_N^2$$
$$m_1^2 \simeq \frac{k_{12}}{2\lambda_2} \frac{k_{23}}{2\lambda_3} \dots \frac{k_{N-1N}}{2\lambda_N} m_N^2$$

The mixing matrix has the following form:

Such NN matrix can be diagonalized using the product of rotation matrices that sequentially lead to a diagonal form of the 22 matrix blocks:

$\cos \theta_1$	$sin\theta_1$	0	0	0		$0 \rangle$		(1)	0	0	0	0		$0 \rangle$		(1)	0	0	0	0		0	
$-sin\hat{\theta}_1$	$cos \theta_1$	0	0		0			0	$cos\theta_2$	$sin\theta_2$	0	0		0		0	1	0	0	0		0	
0	0	1	0	0		0		0	$-sin\theta_2$	$cos\theta_2$	0	0		0	X	0	0	1	0	0		0	
							×								~		•••	•••		•••			
0	0		0	0	1	0		0	0		0	0	1	0		0	0	•••	0	0	$cos \theta_N$	$sin heta_N$	
0	0	0		0	0	1/		$\int 0$	0	0		0	0	1/		$\setminus 0$	0	0		0	$-sin\theta_N$	$\cos\theta_N$	

The correction to the mass squared of the scalar h_1 from the loop contribution of the scalar h_i is proportional to

 $m_i^2 \cdot \log(m_i^2/m_1^2)$

After the diagonalization the interaction vertex of the scalars h1 and hi contains the coupling constant being proportional to the product of mixing parameter and therefore

$$\frac{k_{12}}{2\lambda_2} \dots \frac{k_{i-1i}}{2\lambda_N} \cdot m_i^2 \cdot \log(m_i^2/m_1^2) \simeq m_1^2 \cdot \log(m_i^2/m_1^2)$$

The little hierarchy problem does not show up

Concluding remarks

In proposed Toy Model negative μ^2 at "our scale" is induced as a result of spontaneous symmetry breaking at some higher scales.

The hierarchy problem might be resolved due to a product of a number of small mixing parameters.

The construction is rather interesting mathematically

However, in order to be more realistic one has to address many questions:

- Loop corrections and renormgroup evolution ?
- Collider phenomenology, unique observational signals ?
- Cosmological implications ?

(more degrees of freedom, changes in evolution ...) Do the symmetry breakings in the chain happen simultaneously or at different temperatures?

- Examples addressing the Dark Matter issues ?

Scalar Portals for DM: 0702143, 0011335, 0509209, 0701035, 1106.3097, 1211.1014, 1502.01361, 1501.02234, 1701.08134, 1903.03616, 2010.09718, 2103.17064...

DM constrains

1. Theoretical constraints:

The perturbative unitarity of VV -> hh scattering amplitudes

2. Thermal relic abundance:

DM relic density by numerically solving the Boltzmann equation at each parameter point. $\Omega_{DM}h^2=0.1188\pm0.0010$

3. Higgs invisible decays:

 $\Gamma_{inv}^{\ h} \leq 0.19 \ \Gamma_{total}^{\ h}$

4. Indirect DM detection via gamma rays:

Fermi-LAT data

5. Direct DM detection:

XENON1T 2018, LUX 2016, PandaX 2016 and 2017, CDMSlite, CRESSTII, PICO-60 and DarkSide-50 data

6. DM capture and annihilation in the Sun:

likelihoods from the 79-string IceCube searches for high-energy neutrinos from DM annihilation in the Sun

Implemented in the GAMBIT software.

Thank you !

Back up slides