## Multi-loop modularity

David Broadhurst, Open University, UK, 11 October 2021, virtually at Advances in Quantum Field Theory, 2021 held at JINR, Dubna

I begin by citing notable work by Vladimir Belokurov, Konstantin Chetyrkin, Dmitry Kazakov, Nikolay Krasnikov, Anatoly Radyushkin, Vladimir Smirnov and Alexey Vladimirov, up to 5 loops.
This leads to discussion of the number content of single-scale Feynman integrals, in counterterms and in $(g-2)$ for the electron.
In counterterms, multiple zeta values (MZVs) appear at 6 loops. Multiple polylogarithms of sixth roots of unity appear at 7 loops. Modular forms create obstructions at 8 loops.

For the massive on-shell sunrise diagrams relevant to $(g-2)$, modular forms of weight 4 and level 6 appear at 4 loops.

Modular forms of levels 14 and 34 determine off-shell Feynman integrals that give the areas of black holes obtained by compactification of a 10-dimensional supergravity theory on Calabi-Yau three-folds with complex structure.

## 1 <br> Some notable papers by younger physicists

I cite a dozen papers by the seven seventy-year-olds, which were written when they were less than half their present age and have influenced my own work.
[1] Ultraviolet asymptotics in presence of non-abelian gauge fields,
V.V. Belokurov, A.A. Vladimirov, D.I. Kazakov, A.A. Slavnov, D.V. Shirkov, Teor.Mat.Fiz. 19 (1974) 149-162. [ $6 \zeta_{3}$ appears at 3 loops.]
[2] Methods of calculating many-loop diagrams and renormalization-group analysis of the $\phi^{4}$ theory, A.A. Vladimirov, Teor.Mat.Fiz. 36 (1978) 732-737. [20 $\zeta_{5}$ appears at 4 loops.]
[3] Finite energy sum rules for the cross-section of $e^{+} e^{-}$annihilation into hadrons in QCD, K.G. Chetyrkin, N.V. Krasnikov, A.N. Tavkhelidze, Phys.Lett.B 76 (1978) 83-84.
[4] Calculation of critical exponents by quantum field theory methods, D.I. Kazakov, O.V. Tarasov, A.A. Vladimirov, Sov.Phys.JETP 50 (1979) 521.
[5] New approach to evaluation of multiloop Feynman integrals: the Gegenbauer polynomial $x$-space technique, K.G. Chetyrkin, A.L. Kataev, F.V. Tkachov, Nucl.Phys.B 174 (1980) 345-377.
[6] Integration by parts: the algorithm to calculate $\beta$-functions in 4 loops, K.G. Chetyrkin, F.V.Tkachov, Nucl.Phys.B 192 (1981) 159-204.
[7] Analytic renormalization of massless theories, S.A. Anikin, V.A. Smirnov, Teor.Mat.Fiz. 51, (1982) 317-321.
[8] Method for computing higher gluonic power corrections to QCD charmonium sum rules, S.N. Nikolaev, A.V. Radyushkin, Phys.Lett.B 110 (1982) 476-480.
[9] Infrared $R$-operation and ultraviolet counterterms in the MS-scheme, K.G. Chetyrkin, F.V.Tkachov, Phys.Lett.B 114 (1982) 340-344.
[10] Five-loop renormalization group calculations in the $\phi^{4}$ theory, K.G. Chetyrkin, S.G. Gorishny, S.A. Larin, F.V. Tkachov, Phys.Lett.B 132 (1983) 351-353. [Corrected by Verena Schulte-Frohlinde in 1995.]
[11] $R^{*}$-operation corrected, K.G. Chetyrkin, V.A. Smirnov, Phys.Lett.B 144 (1984) 419-424.
[12] Multiloop calculations: method of uniqueness and functional equations, D.I. Kazakov, Teor.Mat.Fiz. 62 (1985) 84-89.
[The 5 -loop zig-zag diagram evaluates to $\frac{441}{8} \zeta_{7}$.]

## 2 What comes after $\frac{441}{8} \zeta_{7}$ ?

I studied 6-loop counterterms in 1985, determining

$$
P_{6,1}=168 \zeta_{9}, \quad P_{6,2}=\frac{1063}{9} \zeta_{9}+8 \zeta_{3}^{3}, \quad 16 P_{6,3}+P_{6,4}=1440 \zeta_{3} \zeta_{5}
$$

with Riemann zeta values $\zeta_{a}=\sum_{n>0} n^{-a}$. I had a strong intuition that $P_{6,3}$ and $P_{6,4}$ would involve $\zeta_{8}$ and the multiple zeta value (MZV)

$$
\zeta_{5,3}=\sum_{m>n>0} \frac{1}{m^{5} n^{3}}=0.03770767298484754401130478 \ldots
$$

but did not have enough digits for the periods to test this.
Later, Dirk Kreimer and I obtained $P_{6,3}=256 N_{3,5}+72 \zeta_{3} \zeta_{5}$ and $P_{6,4}=-4096 N_{3,5}+288 \zeta_{3} \zeta_{5}$, with

$$
N_{3,5}=\frac{27}{80} \zeta_{5,3}+\frac{45}{64} \zeta_{3} \zeta_{5}-\frac{261}{320} \zeta_{8} .
$$

We found $\zeta_{3,5,3}$, with weight 11 and depth 3 , in some 7-loop periods. Our conjecture for value of the $L$-loop zig-zag diagram was later proven by Francis Brown and Oliver Schnetz.

## 3 7-loop counterterms

I found empirical reductions to MZVs for a pair of 7-loop periods

$$
\begin{aligned}
P_{7,8}= & \frac{22383}{20} \zeta_{11}+\frac{4572}{5}\left(\zeta_{3,5,3}-\zeta_{3} \zeta_{5,3}\right)-700 \zeta_{3}^{2} \zeta_{5} \\
& +1792 \zeta_{3}\left(\frac{9}{320}\left(12 \zeta_{5,3}-29 \zeta_{8}\right)+\frac{45}{64} \zeta_{5} \zeta_{3}\right) \\
P_{7,9}= & \frac{92943}{160} \zeta_{11}+\frac{3381}{20}\left(\zeta_{3,5,3}-\zeta_{3} \zeta_{5,3}\right)-\frac{1155}{4} \zeta_{3}^{2} \zeta_{5} \\
& +896 \zeta_{3}\left(\frac{9}{320}\left(12 \zeta_{5,3}-29 \zeta_{8}\right)+\frac{45}{64} \zeta_{5} \zeta_{3}\right)
\end{aligned}
$$

that had been expected to involve alternating sums. These results were later proven, one by Erik Panzer and the other by Oliver Schnetz. They obtained complicated combinations of alternating sums which then gave my formulas by use of proven results in the MZV data-mine.


The period from this 7-loop diagram is called $P_{7,11}$ in the census of Schnetz. All other periods up to 7 loops reduce to MZVs; only $P_{7,11}$ requires nested sums with sixth roots of unity. Panzer evaluated $\sqrt{3} P_{7,11}$ in terms of 4589 such sums, each of which he evaluated to 5000 digits. Then he found an empirical reduction to a 72 -dimensional basis. The rational coefficient of $\pi^{11}$ in his result was

$$
C_{11}=-\frac{964259961464176555529722140887}{2733669078108291387021448260000}
$$

whose denominator contains the large primes 50909 and 121577.
I built a data-mine to enable substantial simplification of this result, with no prime greater than 3 appearing in the denominator of any rational coefficient.

## 4 Modular obstructions in 8-loop counterterms

There are 41 periods, $P_{8, k}$, at 8 loops, in the $\phi^{4}$ census of Schnetz. Of these, 33 are known analytically. Moreover, 4 of the 8 undetermined cases are likely to be reducible to multiple polylogs of roots of unity. The remaining 4 cases are $P_{8,37}$, $P_{8,38} P_{8,39}$ and $P_{8,41}$, for each of which there is an obstruction.
In the case of $P_{8,37}$, studied by Brown and Schnetz, the obstruction occurs after integrating over 12 of the 16 Schwinger parameters in the 15 -dimensional projective integral. Then one hits a denominator

$$
D(a, b, c, d)=b(a+c)(a c+b d)-a d(b+c)(c+d)
$$

in the integrand for the remaining 3 integrations, over ( $a, b, c$ ), with $d=1$. Counting zeros of $D$ in finite fields, one may identity this obstruction with a modular form of weight 3 and level 7 , namely the eta quotient

$$
\begin{gathered}
f_{3,7}(\tau)=\left(\eta_{1} \eta_{7}\right)^{3}=q-3 q^{2}+5 q^{4}-7 q^{7}-3 q^{8}+9 q^{9}-6 q^{11}+21 q^{14}+O\left(q^{16}\right) \\
\eta_{n}=q^{n / 24} \prod_{k>0}\left(1-q^{n k}\right), \quad q=\exp (2 \pi \mathrm{i} \tau) .
\end{gathered}
$$

Similarly, $P_{8,38}$ is obstructed by $\left(\eta_{1} \eta_{5}\right)^{4}, P_{8,39}$ by $\left(\eta_{1} \eta_{8}\right)^{2} \eta_{2} \eta_{4}$ and $P_{8,41}$ by $\left(\eta_{1} \eta_{3}\right)^{6}$.

## 5 Periods and quasi-periods from Stephano Laporta

The magnetic moment of the electron, in Bohr magnetons, has electrodynamic contributions $\sum_{L \geq 0} a_{L}(\alpha / \pi)^{L}$ given up to $L=4$ loops by

$$
\begin{aligned}
a_{0} & =1 \quad[\text { Dirac, 1928] } \\
a_{1} & =0.5 \quad[\text { Schwinger, 1947] } \\
a_{2} & =-0.32847896557919378458217281696489239241111929867962 \ldots \\
a_{3} & =1.18124145658720000627475398221287785336878939093213 \ldots \\
a_{4} & =-1.91224576492644557415264716743983005406087339065872 \ldots
\end{aligned}
$$

In 1957, corrections by Petermann and Sommerfield resulted in

$$
a_{2}=\frac{197}{144}+\frac{\zeta_{2}}{2}+\frac{3 \zeta_{3}-2 \pi^{2} \log 2}{4} .
$$

In 1996, Laporta and Remiddi [hep-ph/9602417] gave us

$$
\begin{aligned}
a_{3}= & \frac{28259}{5184}+\frac{17101 \zeta_{2}}{135}+\frac{139 \zeta_{3}-596 \pi^{2} \log 2}{18} \\
& -\frac{39 \zeta_{4}+400 U_{3,1}}{24}-\frac{215 \zeta_{5}-166 \zeta_{3} \zeta_{2}}{24} .
\end{aligned}
$$

The 3-loop contribution contains a weight-4 depth-2 polylogarithm

$$
U_{3,1}=\sum_{m>n>0} \frac{(-1)^{m+n}}{m^{3} n}=\frac{\zeta_{4}}{2}+\frac{\left(\pi^{2}-\log ^{2} 2\right) \log ^{2} 2}{12}-2 \sum_{n>0} \frac{1}{2^{n} n^{4}}
$$

encountered in my study of alternating sums [arXiv:hep-th/9611004].
Equally fascinating is the Bessel moment $B$, at weight 4, in the breath-taking evaluation by Laporta [arXiv:1704.06996] of $\mathbf{4 8 0 0}$ digits of

$$
a_{4}=P+B+E+U \approx 2650.565-1483.685-1036.765-132.027 \approx-1.912
$$

where $P$ comprises polylogs and $E$ comprises integrals, with weights 5,6 and 7 , whose integrands contain logs and products of elliptic integrals.
$U$ comes from 6 light-by-light integrals, still under investigation.
The weight-4 non-polylogarithm at 4 loops has $N=6$ Bessel functions:

$$
B=-\int_{0}^{\infty} \frac{27550138 t+35725423 t^{3}}{48600} I_{0}(t) K_{0}^{5}(t) \mathrm{d} t
$$

### 5.1 Bessel moments and modular forms

Gauss noted on 30 May 1799 that the lemniscate constant

$$
\int_{0}^{1} \frac{\mathrm{~d} x}{\sqrt{1-x^{4}}}=\frac{\Gamma^{2}\left(\frac{1}{4}\right)}{4 \sqrt{2 \pi}}=\frac{\pi / 2}{\operatorname{agm}(1, \sqrt{2})}=\frac{\left(\sum_{n \in \mathbf{Z}} \exp \left(-\pi n^{2}\right)\right)^{2} \pi}{2 \sqrt{2}}
$$

is given by the reciprocal of an arithmetic-geometric mean. This is an example of the Chowla-Selberg formula (1949) at the first singular value. In 1939, Watson encountered the sixth singular value, in work on integrals from condensed matter physics. Here, $\left(\sum_{n \in \mathbf{Z}} \exp \left(-\sqrt{\mathbf{6}} \pi n^{2}\right)\right)^{4}$ gives the product of $\Gamma(k / \mathbf{2 4})$ with $k=1,5,7,11$, as observed by Glasser and Zucker in 1977.
In 2007, I evaluated a 3-loop sunrise integral at the fifteenth singular value, where $\left(\sum_{n \in \mathbf{Z}} \exp \left(-\sqrt{\mathbf{1 5}} \pi n^{2}\right)\right)^{4}$ gives the product of $\Gamma(k / \mathbf{1 5})$ with $k=1,2,4,8$.
With $N=a+b$ Bessel functions and $c \geq 0$, I define moments

$$
M(a, b, c)=\int_{0}^{\infty} I_{0}^{a}(t) K_{0}^{b}(t) t^{c} \mathrm{~d} t
$$

that converge for $b>a>0$. Then the 5 -Bessel matrix is

$$
\left[\begin{array}{ll}
M(1,4,1) & M(1,4,3) \\
M(2,3,1) & M(2,3,3)
\end{array}\right]=\left[\begin{array}{cc}
\pi^{2} C & \pi^{2}\left(\frac{2}{15}\right)^{2}\left(13 C-\frac{1}{10 C}\right) \\
\frac{\sqrt{15 \pi} C}{2} C & \frac{\sqrt{15 \pi}}{2}\left(\frac{2}{15}\right)^{2}\left(13 C+\frac{1}{10 C}\right)
\end{array}\right] .
$$

The determinant $2 \pi^{3} / \sqrt{3^{3} 5^{5}}$ is free of the 3-loop constant

$$
C=\frac{\pi}{16}\left(1-\frac{1}{\sqrt{5}}\right)\left(\sum_{n=-\infty}^{\infty} \exp \left(-\sqrt{\mathbf{1 5}} \pi n^{2}\right)\right)^{4}=\frac{1}{240 \sqrt{5} \pi^{2}} \prod_{k=0}^{3} \Gamma\left(\frac{2^{k}}{\mathbf{1 5}}\right) .
$$

The L-series for $N=5$ Bessel functions comes from a modular form of weight $\mathbf{3}$ and level $\mathbf{1 5}$ [arXiv:1604.03057]:

$$
\begin{aligned}
f_{3,15}(\tau) & =\left(\eta_{3} \eta_{5}\right)^{3}+\left(\eta_{1} \eta_{15}\right)^{3}=\sum_{n>0} A_{5}(n) q^{n} \\
L_{5}(s) & =\sum_{n>0} \frac{A_{5}(n)}{n^{s}} \text { for } s>2 \\
L_{5}(1) & =\sum_{n>0} \frac{A_{5}(n)}{n}\left(2+\frac{\sqrt{\mathbf{1 5}}}{2 \pi n}\right) \exp \left(-\frac{2 \pi n}{\sqrt{\mathbf{1 5}}}\right) \\
& =5 C=\frac{5}{\pi^{2}} \int_{0}^{\infty} I_{0}(t) K_{0}^{4}(t) t \mathrm{~d} t .
\end{aligned}
$$

### 5.2 Periods and quasi-periods for the Laporta problem

Laporta's work engages the first row of the 6-Bessel determinant

$$
\operatorname{det}\left[\begin{array}{ll}
M(1,5,1) & M(1,5,3) \\
M(2,4,1) & M(2,4,3)
\end{array}\right]=\frac{5 \zeta_{4}}{32}
$$

associated to a modular form $f_{4,6}(\tau)=\left(\eta_{1} \eta_{2} \eta_{3} \eta_{6}\right)^{2}$ with weight 4 and level $\mathbf{6}$. At top left we have $M(1,5,1)$, from the on-shell 4-loop sunrise diagram, in two spacetime dimensions. Below it, $M(2,4,1)$ comes from cutting an internal line. The second column comes from differentiating the first, with respect to the external momentum, to produce quasi-periods associated with a weakly holomorphic modular form

$$
\widehat{f}_{4,6}(\tau)=\mu f_{4,6}(\tau), \quad \mu=\frac{1}{32}\left(w+\frac{3}{w}\right)^{4}-\frac{9}{16}\left(w+\frac{3}{w}\right)^{2}, \quad w=\frac{3 \eta_{3}^{4} \eta_{2}^{2}}{\eta_{1}^{4} \eta_{6}^{2}}
$$

With $s=1,2$, I computed compute 10,000 digits of the Eichler integrals

$$
\frac{\Omega_{s}}{(2 \pi)^{s}}=\int_{1 / \sqrt{3}}^{\infty} f_{4,6}\left(\frac{1+\mathrm{i} y}{2}\right) y^{s-1} d y, \quad \frac{\widehat{\Omega}_{s}}{(2 \pi)^{s}}=\int_{1 / \sqrt{3}}^{\infty} \widehat{f}_{4,6}\left(\frac{1+\mathrm{i} y}{2}\right) y^{s-1} d y
$$

The linear relations to the periods $\Omega_{1,2}$ and the quasi-periods $\widehat{\Omega}_{1,2}$ are

$$
\frac{2}{\pi^{2}}\left[\begin{array}{cc}
4 M(1,5,1) & \frac{36}{5}(M(1,5,1)+M(1,5,3)) \\
\frac{5}{3} M(2,4,1) & 3(M(2,4,1)+M(2,4,3))
\end{array}\right]=\left[\begin{array}{ll}
-\Omega_{2} & \widehat{\Omega}_{2} \\
-\Omega_{1} & \widehat{\Omega}_{1}
\end{array}\right] .
$$

The intersection number is the determinant of this matrix, namely $\frac{1}{12}$. David Roberts and I converted this into a quadratic relation between hypergeometeric series:

$$
\begin{array}{lrrrrrrrr}
F_{a}={ }_{4} F_{3}(r & 1 / 2, & 2 / 3, & 2 / 3, & 5 / 6 ; & 7 / 6, & 7 / 6, & 4 / 3 ; & 1) \\
F_{b}={ }_{4} F_{3}(-1 / 2, & 1 / 6, & 1 / 3, & 4 / 3 ; & -1 / 6, & 5 / 6, & 5 / 3 ; & 1) \\
F_{c}={ }_{4} F_{3}( & 1 / 6, & 1 / 3, & 1 / 3, & 1 / 2 ; & 2 / 3, & 5 / 6, & 5 / 6 ; & 1) \\
F_{d}={ }_{4} F_{3}(-7 / 6, & -1 / 2, & -1 / 3, & 2 / 3 ; & -5 / 6, & 1 / 6, & 1 / 3 ; & 1)
\end{array}
$$

namely

$$
7 F_{a} F_{b}+10 F_{c} F_{d}=40
$$

At 6 loops we encounter periods of the weight- 6 modular form

$$
f_{6,6}(\tau)=\frac{\eta_{2}^{9} \eta_{3}^{9}}{\eta_{1}^{3} \eta_{6}^{3}}+\frac{\eta_{1}^{9} \eta_{6}^{9}}{\eta_{2}^{3} \eta_{3}^{3}} .
$$

## 6 <br> Areas of black holes from modular Feynman integrals

In 2019, Philip Candelas, Xenia de la Ossa, Mohamed Elmi and Duco van Straten announced a remarkable discovery of A One Parameter Family of Calabi-Yau Manifolds with Attractor Points of Rank Two [arXiv:1912.06146]. They compactified a 10-dimensional supergravity theory on a Calabi-Yau three-fold with complex structure, to obtain 4-dimensional black holes, with event horizons whose areas are determined by their electric and magnetic charges and by ratios of periods of modular forms of weight 4 and levels 14 or $\mathbf{3 4}$. Hearing of this on a visit to Oxford, in November 2019, I observed that their Calabi-Yau periods come from solutions to a homogeneous differential equation associated with 4 loop sunrise integrals, namely

$$
\begin{aligned}
M_{m, n}(z) & =\int_{0}^{\infty} I_{0}(x z)\left[I_{0}(x)\right]^{m}\left[K_{0}(x)\right]^{5-m} x^{2 n+1} \mathrm{~d} x \\
N_{m, n}(z) & =z \int_{0}^{\infty} I_{1}(x z)\left[I_{0}(x)\right]^{m}\left[K_{0}(x)\right]^{5-m} x^{2 n+2} \mathrm{~d} x
\end{aligned}
$$

with $m \in\{0,1,2\}$, integers $n \geq 0$ and real $z^{2}<(5-2 m)^{2}$. The uncut diagram gives $M_{0,0}(z)$ and satisfies an inhomogeneous differential equation.

The external mass is $z$. At $z=1$ we obtain Laporta's on-shell periods, for the magnetic moment of the electron at 4 loops, coming from the modular form $f_{4,6}(\tau)=\left(\eta_{1} \eta_{2} \eta_{3} \eta_{6}\right)^{2}$ with level 6 . With mass $z=\sqrt{\mathbf{1 7}}-4$, I obtained level 34 periods. At the space-like point $z=\sqrt{-7}$, I obtained level 14 periods.
Candelas et al. were unable to identify all of the 16 Calabi-Yau periods. At each of the levels 14 and 34, I found that are given by 8 Feynman integrals, satisfying two quadratic relations. These 8 integrals determine a pair of periods and a pair of quasi-periods at each of the weights 2 and 4 .
Here I indicate the situation at level 14, where I identified

$$
f_{4,14}(\tau)=\frac{\left(\eta_{2} \eta_{7}\right)^{6}}{\left(\eta_{1} \eta_{14}\right)^{2}}-4\left(\eta_{1} \eta_{2} \eta_{7} \eta_{14}\right)^{2}+\frac{\left(\eta_{1} \eta_{14}\right)^{6}}{\left(\eta_{2} \eta_{7}\right)^{2}}
$$

as the relevant modular form of weight 4. Its periods are critical values of the L-function $L\left(f_{4,14}, s\right)=\left((2 \pi)^{s} / \Gamma(s)\right) \int_{0}^{\infty} f_{4,14}(\mathrm{i} y) y^{s-1} \mathrm{~d} y$, with

$$
\begin{aligned}
L\left(f_{4,14}, 3\right) & =M_{1,0}(\sqrt{-7})=\int_{0}^{\infty} J_{0}(\sqrt{7} x) I_{0}(x) K_{0}^{4}(x) x \mathrm{~d} x=\frac{\pi^{2}}{7} L\left(f_{4,14}, 1\right) \\
\frac{1}{2} L\left(f_{4,14}, 2\right) & =M_{2,0}(\sqrt{-7})=\int_{0}^{\infty} J_{0}(\sqrt{7} x) I_{0}^{2}(x) K_{0}^{3}(x) x \mathrm{~d} x
\end{aligned}
$$

There is also a modular form of weight 2 to consider, $f_{2,14}(\tau)=\eta_{1} \eta_{2} \eta_{7} \eta_{14}$. This provides a modular parametrization of a quartic elliptic curve, namely

$$
\begin{aligned}
d^{2} & =(1+h)(1+8 h)\left(1+5 h+8 h^{2}\right) \\
h & =\left(\frac{\eta_{2} \eta_{14}}{\eta_{1} \eta_{7}}\right)^{3}=q+3 q^{2}+6 q^{3}+13 q^{4}+O\left(q^{5}\right) \\
d & =\frac{q}{f_{2,14}} \frac{\mathrm{~d} h}{\mathrm{~d} q}=1+7 q+27 q^{2}+92 q^{3}+259 q^{4}+O\left(q^{5}\right)
\end{aligned}
$$

Kevin Acres and I determined a weakly holomorphic form that gives the weight-4 quasi-periods. The space of cuspforms is 4 -dimensional and we had to solve a $4 \times 10$ matrix problem, for weakly holomorphic forms obtained by multiplying $f_{2,14}^{2}$ by polynomials that are linear in $d$ and quartic in $h$.
At level 34, Feynman integrals determine the area of the event horizon of a black hole with charges specified by $(k, \ell)$ studied by Candelas at al., namely

$$
A=\mathbf{3 4 \pi}\left(\frac{k^{2}}{v}+\ell^{2} v\right), \quad v=4 \pi \frac{M_{2,0}(z)}{M_{1,0}(z)}=4 \pi \frac{\int_{0}^{\infty} I_{0}(z x) I_{0}^{2}(x) K_{0}^{3}(x) x \mathrm{~d} x}{\int_{0}^{\infty} I_{0}(z x) I_{0}(x) K_{0}^{4}(x) x \mathrm{~d} x}
$$

where $z=\sqrt{\mathbf{1 7}}-4$ is the external mass in the 4-loop sunrise diagram, with two internal propagators cut in the numerator of $v$ and one in the denominator. The level $\mathbf{1 4}$ case corresponds to the space-like momentum $z=\sqrt{-7}$.

## Summary

1. Zeta values suffice for counterterms up to 5 loops. MZVs appear at 6 loops.
2. Multiple polylogs of sixth roots of unity appear at 7 loops.
3. Modular forms obstruct reductions to polylogs at 8 loops.
4. Sunrise diagrams involve modular forms at 3,4 and 6 loops.
5. Off-shell massive 4-loop diagrams involve modular forms whose periods determine areas of black holes in compactified supergravity.

Acknowledgements: I am grateful to my co-authors, Pavel Baikov, Varouzhan Baluni, Andrei Davydychev, Andrey Grozin, Viacheslav Ilyin, Andrei Kataev, Anatoly Kotikov, Vladimir Smirov, Oleg Tarasov and Wadim Zudilin, who helped to ground me in a fine Russian tradition, and to Konstantin Chetyrkin, Sergo Gerasimov, Vladimir Gerdt ${ }^{\dagger}$, Boris Ioffe, Mikhail Kalmykov, Dmitry Kazakov, Gregory Korchemsky, Sergei Larin, Roman Lee, Viktor Matveev, Valery Rubakov, Dmitry Shirkov ${ }^{\dagger}$, Emery Sokatchev, Fyodor Tkachov ${ }^{\dagger}$ and Natalia Ussyukina ${ }^{\dagger}$, for generous advice and encouragement that deepened this attachment. Sadly, Sergei Gorishny ${ }^{\dagger}$ died too young for me to meet him. Underpinning so much of this work, abides the legacy of Nikolay Bogolyubov ${ }^{\dagger}$, commemorated at Novodevichy.

