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I begin by citing notable work by Vladimir Belokurov, Konstantin Chetyrkin,
Dmitry Kazakov, Nikolay Krasnikov, Anatoly Radyushkin, Vladimir
Smirnov and Alexey Vladimirov, up to 5 loops.

This leads to discussion of the number content of single-scale Feynman integrals,
in counterterms and in (g − 2) for the electron.

In counterterms, multiple zeta values (MZVs) appear at 6 loops. Multiple
polylogarithms of sixth roots of unity appear at 7 loops. Modular forms
create obstructions at 8 loops.

For the massive on-shell sunrise diagrams relevant to (g − 2), modular forms of
weight 4 and level 6 appear at 4 loops.

Modular forms of levels 14 and 34 determine off-shell Feynman integrals that
give the areas of black holes obtained by compactification of a 10-dimensional
supergravity theory on Calabi-Yau three-folds with complex structure.
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1 Some notable papers by younger physicists

I cite a dozen papers by the seven seventy-year-olds, which were written when
they were less than half their present age and have influenced my own work.

[1] Ultraviolet asymptotics in presence of non-abelian gauge fields,
V.V. Belokurov, A.A. Vladimirov, D.I. Kazakov, A.A. Slavnov, D.V. Shirkov,
Teor.Mat.Fiz. 19 (1974) 149-162. [6ζ3 appears at 3 loops.]

[2] Methods of calculating many-loop diagrams and renormalization-group analysis
of the φ4 theory, A.A. Vladimirov, Teor.Mat.Fiz. 36 (1978) 732–737.
[20ζ5 appears at 4 loops.]

[3] Finite energy sum rules for the cross-section of e+e− annihilation into hadrons
in QCD, K.G. Chetyrkin, N.V. Krasnikov, A.N. Tavkhelidze, Phys.Lett.B 76
(1978) 83-84.

[4] Calculation of critical exponents by quantum field theory methods,
D.I. Kazakov, O.V. Tarasov, A.A. Vladimirov, Sov.Phys.JETP 50 (1979) 521.

[5] New approach to evaluation of multiloop Feynman integrals: the Gegenbauer
polynomial x-space technique, K.G. Chetyrkin, A.L. Kataev, F.V. Tkachov,
Nucl.Phys.B 174 (1980) 345-377.

2



[6] Integration by parts: the algorithm to calculate β-functions in 4 loops,
K.G. Chetyrkin, F.V.Tkachov, Nucl.Phys.B 192 (1981) 159-204.

[7] Analytic renormalization of massless theories, S.A. Anikin, V.A. Smirnov,
Teor.Mat.Fiz. 51, (1982) 317-321.

[8] Method for computing higher gluonic power corrections to QCD charmonium
sum rules, S.N. Nikolaev, A.V. Radyushkin, Phys.Lett.B 110 (1982) 476-480.

[9] Infrared R-operation and ultraviolet counterterms in the MS-scheme,
K.G. Chetyrkin, F.V.Tkachov, Phys.Lett.B 114 (1982) 340-344.

[10] Five-loop renormalization group calculations in the φ4 theory,
K.G. Chetyrkin, S.G. Gorishny, S.A. Larin, F.V. Tkachov, Phys.Lett.B 132
(1983) 351-353. [Corrected by Verena Schulte-Frohlinde in 1995.]

[11] R∗-operation corrected, K.G. Chetyrkin, V.A. Smirnov, Phys.Lett.B 144
(1984) 419-424.

[12] Multiloop calculations: method of uniqueness and functional equations,
D.I. Kazakov, Teor.Mat.Fiz. 62 (1985) 84-89.
[The 5-loop zig-zag diagram evaluates to 441

8 ζ7.]
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2 What comes after 441
8 ζ7?

I studied 6-loop counterterms in 1985, determining

P6,1 = 168ζ9, P6,2 =
1063

9
ζ9 + 8ζ33 , 16P6,3 + P6,4 = 1440ζ3ζ5

with Riemann zeta values ζa =
∑

n>0 n
−a. I had a strong intuition that P6,3 and

P6,4 would involve ζ8 and the multiple zeta value (MZV)

ζ5,3 =
∑

m>n>0

1

m5n3
= 0.03770767298484754401130478 . . .

but did not have enough digits for the periods to test this.

Later, Dirk Kreimer and I obtained P6,3 = 256N3,5 + 72ζ3ζ5 and
P6,4 = −4096N3,5 + 288ζ3ζ5, with

N3,5 =
27

80
ζ5,3 +

45

64
ζ3ζ5 −

261

320
ζ8.

We found ζ3,5,3, with weight 11 and depth 3, in some 7-loop periods. Our
conjecture for value of the L-loop zig-zag diagram was later proven by Francis
Brown and Oliver Schnetz.
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3 7-loop counterterms

I found empirical reductions to MZVs for a pair of 7-loop periods

P7,8 =
22383

20
ζ11 +

4572

5
(ζ3,5,3 − ζ3ζ5,3)− 700ζ23ζ5

+ 1792ζ3

(
9

320
(12ζ5,3 − 29ζ8) +

45

64
ζ5ζ3

)
P7,9 =

92943

160
ζ11 +

3381

20
(ζ3,5,3 − ζ3ζ5,3)−

1155

4
ζ23ζ5

+ 896ζ3

(
9

320
(12ζ5,3 − 29ζ8) +

45

64
ζ5ζ3

)
that had been expected to involve alternating sums. These results were later
proven, one by Erik Panzer and the other by Oliver Schnetz. They obtained
complicated combinations of alternating sums which then gave my formulas by
use of proven results in the MZV data-mine.
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The period from this 7-loop diagram is called P7,11 in the census of Schnetz. All
other periods up to 7 loops reduce to MZVs; only P7,11 requires nested sums with
sixth roots of unity. Panzer evaluated

√
3P7,11 in terms of 4589 such sums, each

of which he evaluated to 5000 digits. Then he found an empirical reduction to a
72-dimensional basis. The rational coefficient of π11 in his result was

C11 = − 964259961464176555529722140887

2733669078108291387021448260000

whose denominator contains the large primes 50909 and 121577.

I built a data-mine to enable substantial simplification of this result, with no prime
greater than 3 appearing in the denominator of any rational coefficient.
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4 Modular obstructions in 8-loop counterterms

There are 41 periods, P8,k, at 8 loops, in the φ4 census of Schnetz. Of these, 33
are known analytically. Moreover, 4 of the 8 undetermined cases are likely to be
reducible to multiple polylogs of roots of unity. The remaining 4 cases are P8,37,
P8,38 P8,39 and P8,41, for each of which there is an obstruction.

In the case of P8,37, studied by Brown and Schnetz, the obstruction occurs after
integrating over 12 of the 16 Schwinger parameters in the 15-dimensional
projective integral. Then one hits a denominator

D(a, b, c, d) = b(a+ c)(ac+ bd)− ad(b+ c)(c+ d)

in the integrand for the remaining 3 integrations, over (a, b, c), with d = 1.
Counting zeros of D in finite fields, one may identity this obstruction with a
modular form of weight 3 and level 7, namely the eta quotient

f3,7(τ) = (η1η7)
3 = q − 3q2 + 5q4 − 7q7 − 3q8 + 9q9 − 6q11 + 21q14 +O(q16),

ηn = qn/24
∏
k>0

(1− qnk), q = exp(2πiτ).

Similarly, P8,38 is obstructed by (η1η5)
4, P8,39 by (η1η8)

2η2η4 and P8,41 by (η1η3)
6.
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5 Periods and quasi-periods from Stephano Laporta

The magnetic moment of the electron, in Bohr magnetons, has electrodynamic
contributions

∑
L≥0 aL(α/π)L given up to L = 4 loops by

a0 = 1 [Dirac, 1928]

a1 = 0.5 [Schwinger, 1947]

a2 = −0.32847896557919378458217281696489239241111929867962 . . .

a3 = 1.18124145658720000627475398221287785336878939093213 . . .

a4 = −1.91224576492644557415264716743983005406087339065872 . . .

In 1957, corrections by Petermann and Sommerfield resulted in

a2 =
197

144
+
ζ2
2

+
3ζ3 − 2π2 log 2

4
.

In 1996, Laporta and Remiddi [hep-ph/9602417] gave us

a3 =
28259

5184
+

17101ζ2
135

+
139ζ3 − 596π2 log 2

18

− 39ζ4 + 400U3,1

24
− 215ζ5 − 166ζ3ζ2

24
.
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The 3-loop contribution contains a weight-4 depth-2 polylogarithm

U3,1 =
∑

m>n>0

(−1)m+n

m3n
=
ζ4
2

+
(π2 − log2 2) log2 2

12
− 2

∑
n>0

1

2nn4

encountered in my study of alternating sums [arXiv:hep-th/9611004].

Equally fascinating is the Bessel moment B, at weight 4, in the breath-taking
evaluation by Laporta [arXiv:1704.06996] of 4800 digits of

a4 = P +B + E + U ≈ 2650.565− 1483.685− 1036.765− 132.027 ≈ −1.912

where P comprises polylogs and E comprises integrals, with weights 5, 6 and 7,
whose integrands contain logs and products of elliptic integrals.
U comes from 6 light-by-light integrals, still under investigation.

The weight-4 non-polylogarithm at 4 loops has N = 6 Bessel functions:

B = −
∫ ∞
0

27550138t+ 35725423t3

48600
I0(t)K

5
0(t)dt.
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5.1 Bessel moments and modular forms

Gauss noted on 30 May 1799 that the lemniscate constant∫ 1

0

dx√
1− x4

=
Γ2(14)

4
√

2π
=

π/2

agm(1,
√

2)
=

(∑
n∈Z exp(−πn2)

)2
π

2
√

2

is given by the reciprocal of an arithmetic-geometric mean. This is an example
of the Chowla-Selberg formula (1949) at the first singular value. In 1939, Watson
encountered the sixth singular value, in work on integrals from condensed matter

physics. Here,
(∑

n∈Z exp(−
√

6πn2)
)4

gives the product of Γ(k/24) with
k = 1, 5, 7, 11, as observed by Glasser and Zucker in 1977.

In 2007, I evaluated a 3-loop sunrise integral at the fifteenth singular value,

where
(∑

n∈Z exp(−
√

15πn2)
)4

gives the product of Γ(k/15) with k = 1, 2, 4, 8.

With N = a+ b Bessel functions and c ≥ 0, I define moments

M(a, b, c) =

∫ ∞
0

Ia0 (t)Kb
0(t)t

cdt

that converge for b > a > 0. Then the 5-Bessel matrix is[
M(1, 4, 1) M(1, 4, 3)
M(2, 3, 1) M(2, 3, 3)

]
=

[
π2C π2

(
2
15

)2 (
13C − 1

10C

)
√
15π
2 C

√
15π
2

(
2
15

)2 (
13C + 1

10C

) ] .
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The determinant 2π3/
√

3355 is free of the 3-loop constant

C =
π

16

(
1− 1√

5

)( ∞∑
n=−∞

exp(−
√

15πn2)

)4

=
1

240
√

5π2

3∏
k=0

Γ

(
2k

15

)
.

The L-series for N = 5 Bessel functions comes from a modular form of weight 3
and level 15 [arXiv:1604.03057]:

f3,15(τ) = (η3η5)
3 + (η1η15)

3 =
∑
n>0

A5(n)qn

L5(s) =
∑
n>0

A5(n)

ns
for s > 2

L5(1) =
∑
n>0

A5(n)

n

(
2 +

√
15

2πn

)
exp

(
− 2πn√

15

)
= 5C =

5

π2

∫ ∞
0

I0(t)K
4
0(t)tdt .
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5.2 Periods and quasi-periods for the Laporta problem

Laporta’s work engages the first row of the 6-Bessel determinant

det

[
M(1, 5, 1) M(1, 5, 3)
M(2, 4, 1) M(2, 4, 3)

]
=

5ζ4
32

associated to a modular form f4,6(τ) = (η1η2η3η6)
2 with weight 4 and level 6. At

top left we have M(1, 5, 1), from the on-shell 4-loop sunrise diagram, in two
spacetime dimensions. Below it, M(2, 4, 1) comes from cutting an internal line.
The second column comes from differentiating the first, with respect to the
external momentum, to produce quasi-periods associated with a weakly
holomorphic modular form

f̂4,6(τ) = µf4,6(τ), µ =
1

32

(
w +

3

w

)4

− 9

16

(
w +

3

w

)2

, w =
3η43η

2
2

η41η
2
6

.

With s = 1, 2, I computed compute 10,000 digits of the Eichler integrals

Ωs

(2π)s
=

∫ ∞
1/
√
3

f4,6

(
1 + iy

2

)
ys−1dy,

Ω̂s

(2π)s
=

∫ ∞
1/
√
3

f̂4,6

(
1 + iy

2

)
ys−1dy.
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The linear relations to the periods Ω1,2 and the quasi-periods Ω̂1,2 are

2

π2

[
4M(1, 5, 1) 36

5 (M(1, 5, 1) +M(1, 5, 3))
5
3M(2, 4, 1) 3 (M(2, 4, 1) +M(2, 4, 3))

]
=

[
−Ω2 Ω̂2

−Ω1 Ω̂1

]
.

The intersection number is the determinant of this matrix, namely 1
12 .

David Roberts and I converted this into a quadratic relation between
hypergeometeric series:

Fa = 4F3( 1/2, 2/3, 2/3, 5/6; 7/6, 7/6, 4/3; 1)
Fb = 4F3( −1/2, 1/6, 1/3, 4/3; −1/6, 5/6, 5/3; 1)
Fc = 4F3( 1/6, 1/3, 1/3, 1/2; 2/3, 5/6, 5/6; 1)
Fd = 4F3( −7/6, −1/2, −1/3, 2/3; −5/6, 1/6, 1/3; 1)

namely
7FaFb + 10FcFd = 40.

At 6 loops we encounter periods of the weight-6 modular form

f6,6(τ) =
η92η

9
3

η31η
3
6

+
η91η

9
6

η32η
3
3

.
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6 Areas of black holes from modular Feynman integrals

In 2019, Philip Candelas, Xenia de la Ossa, Mohamed Elmi and Duco van
Straten announced a remarkable discovery of A One Parameter Family of
Calabi-Yau Manifolds with Attractor Points of Rank Two [arXiv:1912.06146].

They compactified a 10-dimensional supergravity theory on a Calabi-Yau
three-fold with complex structure, to obtain 4-dimensional black holes, with
event horizons whose areas are determined by their electric and magnetic charges
and by ratios of periods of modular forms of weight 4 and levels 14 or 34.

Hearing of this on a visit to Oxford, in November 2019, I observed that their
Calabi-Yau periods come from solutions to a homogeneous differential equation
associated with 4 loop sunrise integrals, namely

Mm,n(z) =

∫ ∞
0

I0(xz)[I0(x)]m[K0(x)]5−mx2n+1dx

Nm,n(z) = z

∫ ∞
0

I1(xz)[I0(x)]m[K0(x)]5−mx2n+2dx

with m ∈ {0, 1, 2}, integers n ≥ 0 and real z2 < (5− 2m)2. The uncut diagram
gives M0,0(z) and satisfies an inhomogeneous differential equation.
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The external mass is z. At z = 1 we obtain Laporta’s on-shell periods, for the
magnetic moment of the electron at 4 loops, coming from the modular form
f4,6(τ) = (η1η2η3η6)

2 with level 6. With mass z =
√

17− 4, I obtained level 34
periods. At the space-like point z =

√
−7, I obtained level 14 periods.

Candelas et al. were unable to identify all of the 16 Calabi-Yau periods. At each of
the levels 14 and 34, I found that are given by 8 Feynman integrals, satisfying two
quadratic relations. These 8 integrals determine a pair of periods and a pair of
quasi-periods at each of the weights 2 and 4.

Here I indicate the situation at level 14, where I identified

f4,14(τ) =
(η2η7)

6

(η1η14)2
− 4(η1η2η7η14)

2 +
(η1η14)

6

(η2η7)2

as the relevant modular form of weight 4. Its periods are critical values of the
L-function L(f4,14, s) = ((2π)s/Γ(s))

∫∞
0 f4,14(iy)ys−1dy, with

L(f4,14, 3) = M1,0(
√
−7) =

∫ ∞
0

J0(
√

7x)I0(x)K4
0(x)xdx =

π2

7
L(f4,14, 1)

1
2L(f4,14, 2) = M2,0(

√
−7) =

∫ ∞
0

J0(
√

7x)I20(x)K3
0(x)xdx.
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There is also a modular form of weight 2 to consider, f2,14(τ) = η1η2η7η14. This
provides a modular parametrization of a quartic elliptic curve, namely

d2 = (1 + h)(1 + 8h)(1 + 5h+ 8h2),

h =

(
η2η14
η1η7

)3

= q + 3q2 + 6q3 + 13q4 +O(q5),

d =
q

f2,14

dh

dq
= 1 + 7q + 27q2 + 92q3 + 259q4 +O(q5).

Kevin Acres and I determined a weakly holomorphic form that gives the
weight-4 quasi-periods. The space of cuspforms is 4-dimensional and we had
to solve a 4× 10 matrix problem, for weakly holomorphic forms obtained by
multiplying f 22,14 by polynomials that are linear in d and quartic in h.

At level 34, Feynman integrals determine the area of the event horizon of a
black hole with charges specified by (k, `) studied by Candelas at al., namely

A = 34π

(
k2

v
+ `2v

)
, v = 4π

M2,0(z)

M1,0(z)
= 4π

∫∞
0 I0(zx)I20(x)K3

0(x)xdx∫∞
0 I0(zx)I0(x)K4

0(x)xdx

where z =
√

17− 4 is the external mass in the 4-loop sunrise diagram, with
two internal propagators cut in the numerator of v and one in the denominator.
The level 14 case corresponds to the space-like momentum z =

√
−7.
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Summary

1. Zeta values suffice for counterterms up to 5 loops. MZVs appear at 6 loops.

2. Multiple polylogs of sixth roots of unity appear at 7 loops.

3. Modular forms obstruct reductions to polylogs at 8 loops.

4. Sunrise diagrams involve modular forms at 3, 4 and 6 loops.

5. Off-shell massive 4-loop diagrams involve modular forms whose periods
determine areas of black holes in compactified supergravity.
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