Scattering Iteratively with Volodya Smirnov

Lance Dixon (SLAC)
"Advances in Quantum Field Theory", 7 @ 70 Dubna, October 12, 2021

Back around 2000: Simplicity of N=4 SYM 4-point integrands

- 1 loop:

Green, Schwarz, Brink (1982)
where

- 2 loops:

Bern, Rozowsky, Yan (1997); Bern, LD, Dunbar, Perelstein, Rozowsky (1998)

- Analogous computation in QCD not completed until 2001

Glover, Oleari, Tejeda-Yeomans (2001); Bern, De Freitas, LD (2002)

- Expansion around $D=4-2 \epsilon$ in QCD and $\mathrm{N}=4$ needed Volodya's integrals:

V. Smirnov, hep-ph/9905323; V. Smirnov, Veretin, hep-ph/9907385

$\mathrm{N}=4$ SYM simplicity for $n>4$ gluons? \rightarrow inspect two-loop collinear limits, $n \rightarrow n-1$

- Study limits as 2 momenta become collinear:
- Tree amplitude behavior:

$$
\begin{aligned}
& k_{a} \rightarrow z k_{P} \\
& k_{b} \rightarrow(1-z) k_{P}
\end{aligned}
$$

- One-loop behavior:

- Two-loop behavior:

Two-loop splitting amplitude iteration for planar N=4 SYM and an amplitude conjecture

- In N=4 SYM, all helicity configurations are equivalent, can write

$$
\operatorname{Split}^{(l)}\left(\lambda_{P}, \lambda_{a}, \lambda_{b}\right)=r_{S}^{(l)}\left(z, s_{a b}, \epsilon\right) \times \operatorname{Split}^{(0)}\left(\lambda_{P}, \lambda_{a}, \lambda_{b}\right)
$$

- Found that two-loop splitting amplitude obeys:

$$
\begin{gathered}
r_{S}^{(2)}(\epsilon)=\frac{1}{2}\left[r_{S}^{(1)}(\epsilon)\right]^{2}+f^{(2)}(\epsilon) r_{S}^{(1)}(2 \epsilon)+\mathcal{O}(\epsilon) \\
\text { where } f^{(2)}(\epsilon)=-\zeta_{2}-\epsilon \zeta_{3}-\epsilon^{2} \zeta_{4}
\end{gathered}
$$

Anastasiou, Bern, LD, Kosower,
hep-th/0309040
consistent with n-point amplitude ABDK ansatz (2-loop only)

$$
\mathcal{M}_{n}^{(2)}(\epsilon)=\frac{1}{2}\left[M_{n}^{(1)}(\epsilon)\right]^{2}+f^{(2)}(\epsilon) M_{n}^{(1)}(2 \epsilon)+C^{(2)}
$$

constant from 4-point amplitude and Volodya's planar double box

Needed 3-loop data to see more of the pattern!

- Planar integrands known from Bern, Rozowsky, Yan (1997)
- Needed $D=4-2 \epsilon$ expansion of integrals

Analytical result for dimensionally regularized massless on-shell planar triple box

V.A. Smirnov

Zvi explained it to Volodya on a napkin

- At Loops and Legs in Zinnowitz, April 2004, after Volodya talked about
- Christened the "tennis court integral" (although really only half a tennis court).

- Volodya got to work on it with Mellin-Barnes, and started producing more and more terms in the expansion in ϵ
- Zvi and I read some QCD papers which explained the IR poles, especially Magnea, Sterman, (1990) for the form factor, together with planar properties

Mellin-Barnes a la Smirnov, circa 2004-2009

L. Dixon Scattering Iteratively with Volodya

Dubna-2021.10.12

ABDK \rightarrow BDS Ansatz

Bern, LD, Smirnov, hep-th/0505205

- Combining Volodya's new tennis-court results with his old ladder results, we found we could write an "iterative relation" for 3-loop 4-point amplitude:

$$
\begin{aligned}
& M_{4}^{(3)}(\epsilon)=-\frac{1}{3}\left[M_{4}^{(1)}(\epsilon)\right]^{3}+M_{4}^{(1)}(\epsilon) M_{4}^{(2)}(\epsilon)+f^{(3)}(\epsilon) M_{4}^{(1)}(3 \epsilon)+C^{(3)}+\mathcal{O}(\epsilon) \\
& \text { es }
\end{aligned}
$$

IR poles

- With this result we could conjecture essentially the same relation to all loop orders and all numbers of legs, the BDS ansatz:

$$
A_{n}^{\text {BDS }} \sim \exp \left[\frac{\Gamma_{\text {cusp }}}{4} \frac{A_{n}^{1-\text { loop }}}{A_{n}^{\text {tree }}}\right] \times R_{n}\left(\frac{x_{i j}^{2} x_{k l}^{2}}{x_{i k}^{2} x_{j l}^{2}}\right)
$$

- Turned out to be right for $n=4,5$ (due to dual conformal invariance) but wrong for $n>5$

Dual conformal invariance is geometric: from AdS/CFT + T-duality

Alday, Maldacena, 0705.0303
$\mathrm{SO}(4,2)$ isometry of space-time

T-duality symmetry of string theory

Alday, Maldacena, 0705.0303

- Exchanges string world-sheet variables σ, τ
- $X^{\mu}(\tau, \sigma)=x^{\mu}+k^{\mu} \tau+$ oscillators
$\Omega \longrightarrow k^{\mu}$
$\rightarrow X^{\mu}(\tau, \sigma)=x^{\mu}+k^{\mu} \sigma+$ oscillators
- Strong coupling limit of planar gauge theory

is semi-classical limit of string theory: world-sheet stretches tight around minimal area surface in AdS.
- Boundary determined by momenta of external states: light-like polygon with null edges = momenta k^{μ}

Amplitudes = Wilson loops

Alday, Maldacena, 0705.0303
Drummond, Korchemsky, Sokatchev, 0707.0243
Brandhuber, Heslop, Travaglini, 0707.1153
Drummond, Henn, Korchemsky, Sokatchev, 0709.2368, 0712.1223, 0803.1466;

Bern, LD, Kosower, Roiban, Spradlin, Vergu, Volovich, 0803.1465

Duality verified to hold at weak coupling too!

- Polygon vertices x_{i} are not positions but dual momenta, $x_{i}-x_{i+1}=k_{i}$
- Transform like positions under dual conformal symmetry

IR Renormalization Schemes

- On-shell amplitudes IR divergent due to long-range gluons
- Polygonal Wilson loops UV divergent at cusps, anomalous dimension $\Gamma_{\text {cusp }}$ known to all orders in planar $\mathbf{N}=4$ SYM: Beisert, Eden, Staudacher, hep-th/0610251

- Both removed by dividing by either BDS ansatz or BDS-like ansatz Bern, LD, Smirnov, hep-th/0505205, Alday, Gaiotto, Maldacena, 0911.4708
- Normalized amplitude finite, dual conformal invariant.
- BDS-like \rightarrow also maintains important relation due to causality (Steinmann) Caron-Huot, LD, McLeod, von Hippel, 1609.00669

BDS begat the Hexagon function bootstrap

LD, Drummond, Henn, 1108.4461, 1111.1704; Caron-Huot, LD, Drummond, Duhr, von Hippel, McLeod, Pennington, 1308.2276, 1402.3300, 1408.1505, 1509.08127; 1609.00669; Caron-Huot, LD, Dulat, von Hippel, McLeod, Papathanasiou, 1903.10890 and 1906.07116

- Use analytical properties of perturbative amplitudes in planar $\mathrm{N}=4 \mathrm{SYM}$ to determine them directly, without ever peeking inside the loops
- Write answer as a linear combination of transcendental functions living in same function space for all loops

- Fix all parameters using "boundary data"
- First step toward doing this nonperturbatively (no loops to peek inside) for general kinematics

How far can we go?

- So far, through 7 loops at 6 points

- Also 4 loops at 7 points
..., LD, Liu, 2007.12966
- And 8 loops for a 3-gluon form factor

LD, A. McLeod, M. Wilhelm, 2012.12286
$L=3,4,5$ loops

+ in progress also with Ö. Gürdoğan
$L=6,7,8$ loops

Rich theoretical "data" mine

- Rare to have perturbative results to 7 or 8 loops
- Usually high loop order \rightarrow single numbers such as β functions or anomalous dimensions
- Here we have analytic functions of 3 variables (6 variables in 7-point case, 2 variables for form-factor)
- Many limits to study (and exploit)

(Near) collinear (OPE) limit

Flux tubes at finite coupling

Alday, Gaiotto, Maldacena, Sever, Vieira, 1006.2788;
Basso, Sever, Vieira, 1303.1396, 1306.2058, 1402.3307, 1407.1736, 1508.03045 BSV+Caetano+Cordova, 1412.1132, 1508.02987

- Tile n-gon with pentagon transitions.
- Quantum integrability \rightarrow compute pentagons exactly in 't Hooft coupling
- 4d S-matrix as expansion (OPE) in number of flux-tube excitations = expansion around near collinear limit

Multi-regge limit

- Amplitude factorizes in Fourier-Mellin space

Bartels, Lipatov, Sabio Vera, 0802.2065, Fadin, Lipatov, 1111.0782;
LD, Duhr, Pennington, 1207.0186; Pennington, 1209.5357;
Basso, Caron-Huot, Sever, 1407.3766 (analytic continuation from OPE limit);
Broedel, Sprenger, 1512.04963; Lipatov, Prygarin, Schnitzer, 1205.0186;
LD, von Hippel, 1408.1505; Del Duca, Druc, Drummond, Duhr, Dulat, Marzucca, Papathanasiou, Verbeek, 1606.08807;...

Key "initial" condition

- Two-loop 6-gluon result first computed numerically from both amplitude and Wilson loop pictures Bern, LD, Kosower, Roiban, Spradlin, Vergu, Volovich, 0803.1466; Drummond, Henn, Korchemsky, Sokatchev, 0803.1466
- Wilson loop side evaluated analytically by Volodya and friends $\rightarrow 17$ pages of [Goncharov] polylogarithms Del Duca, Duhr, V. Smirnov, 0911.5332, 1003.1702
- Simplified to a few lines in term of classical polylogs $\mathrm{Li}_{n}(x)$, demonstrating power of symbol Goncharov, Spradlin, Vergu, Volovich, 1006.5703
- Told us what types of functions were likely to occur at higher loops (symbol alphabet)

Heuristic view of polylogarithmic space

weight

Constraining Parameters in Linear Combination

 (MHV,NMHV): parameters left in $\left(\mathcal{E}^{(L)}, E^{(L)} \& \widetilde{E}^{(L)}\right)$| Constraint | $L=1$ | $L=2$ | $L=3$ | $L=4$ | $L=5$ | $L=6$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. All functions | $(6,6)$ | $(25,27)$ | $(92,105)$ | $(313,372)$ | $(991,1214)$ | $(2951,3692 ?)$ |
| 2. Symmetry | $(2,4)$ | $(7,16)$ | $(22,56)$ | $(66,190)$ | $(197,602)$ | $(567,1795 ?)$ |
| 3. Final entry | $(1,1)$ | $(4,3)$ | $(11,6)$ | $(30,16)$ | $(85,39)$ | $(236,102)$ |
| 4. Collinear limit | $(0,0)$ | $(0,0)$ | $\left(0^{*}, 0^{*}\right)$ | $\left(0^{*}, 2^{*}\right)$ | $\left(1^{* 3}, 5^{* 3}\right)$ | $\left(6^{* 2}, 17^{* 2}\right)$ |
| 5. LL MRK | $(0,0)$ | $(0,0)$ | $(0,0)$ | $(0,0)$ | $\left(0^{*}, 0^{*}\right)$ | $\left(1^{* 2}, 2^{* 2}\right)$ |
| 6. NLL MRK | $(0,0)$ | $(0,0)$ | $(0,0)$ | $(0,0)$ | $\left(0^{*}, 0^{*}\right)$ | $\left(1^{*}, 0^{*}\right)$ |
| 7. NNLL MRK | $(0,0)$ | $(0,0)$ | $(0,0)$ | $(0,0)$ | $(0,0)$ | $(1,0)$ |
| 8. N^{3} LL MRK | $(0,0)$ | $(0,0)$ | $(0,0)$ | $(0,0)$ | $(0,0)$ | $(1,0)$ |
| 9. all MRK | $(0,0)$ | $(0,0)$ | $(0,0)$ | $(0,0)$ | $(0,0)$ | $(1,0)$ |
| 10. T^{1} OPE | $(0,0)$ | $(0,0)$ | $(0,0)$ | $(0,0)$ | $(0,0)$ | $(1,0)$ |
| 11. $T^{2} F^{2} \ln ^{4} T$ OPE | $(0,0)$ | $(0,0)$ | $(0,0)$ | $(0,0)$ | $(0,0)$ | $(0,0)$ |
| 12. all $T^{2} F^{2}$ OPE | $(0,0)$ | $(0,0)$ | $(0,0)$ | $(0,0)$ | $(0,0)$ | $(0,0)$ |

$(0,0) \rightarrow$ amplitude uniquely determined
Also have $L=7$
L. Dixon Scattering Iteratively with Volodya

Properties of Amplitudes

- Having determined the 6-point amplitudes to 7 loops, can study their physical, numerical and (number-theoretic) properties.
- Analytic behavior in various factorization limits.
- What kinds of transcendental numbers appear?
- Numerics feasible on "simple lines" like $(u, u, 1),(u, 1,1),(u, u, u)$.
- Planar N=4 SYM should have finite radius of convergence of perturbative expansion (unlike QCD, QED, whose perturbative series are asymptotic).
- For BES solution to cusp anomalous dimension, using coupling $g^{2}=\frac{\lambda}{16 \pi^{2}}$, radius is $\frac{1}{16}$
\rightarrow Ratio of successive coefficients: $\quad \frac{\Gamma_{\text {cusp }}^{(L)}}{\Gamma_{\text {cusp }}^{(L-1)}} \rightarrow-16$

At $(u, v, w)=(1,1,1)$, amplitude \rightarrow MZVs

Allowed MZV's obey a Galois "co-action" principle, restricting the

MHV

NMHV

$$
\begin{array}{rlrl}
\mathcal{E}^{(1)}(1,1,1)= & 0, & \text { "co-action" principle, restricting } \\
\mathcal{E}^{(2)}(1,1,1)= & -10 \zeta_{4}, & \text { combinations that can appear } \\
\mathcal{E}^{(3)}(1,1,1)= & \frac{413}{3} \zeta_{6}, & \text { Brown, Panzer, Schnetz } \\
\mathcal{E}^{(4)}(1,1,1)= & -\frac{5477}{3} \zeta_{8}+24\left[\zeta_{5,3}+5 \zeta_{3} \zeta_{5}-\zeta_{2}\left(\zeta_{3}\right)^{2}\right], \\
\mathcal{E}^{(5)}(1,1,1)= & \frac{379957}{15} \zeta_{10}-12\left[4 \zeta_{2} \zeta_{5,3}+25\left(\zeta_{5}\right)^{2}\right] \\
& -96\left[2 \zeta_{7,3}+28 \zeta_{3} \zeta_{7}+11\left(\zeta_{5}\right)^{2}-4 \zeta_{2} \zeta_{3} \zeta_{5}-6 \zeta_{4}\left(\zeta_{3}\right)^{2}\right] \\
& & \\
E^{(1)}(1,1,1)= & -2 \zeta_{2}, & \\
E^{(2)}(1,1,1)= & 26 \zeta_{4}, & \\
E^{(3)}(1,1,1)= & -\frac{940}{3} \zeta_{6}, & \\
E^{(4)}(1,1,1)= & -\frac{36271}{9} \zeta_{8}-24\left[\zeta_{5,3}+5 \zeta_{3} \zeta_{5}-\zeta_{2}\left(\zeta_{3}\right)^{2}\right], \\
E^{(5)}(1,1,1)= & -\frac{1666501}{30} \zeta_{10}+12\left[4 \zeta_{2} \zeta_{5,3}+25\left(\zeta_{5}\right)^{2}\right] \\
& +132\left[2 \zeta_{7,3}+28 \zeta_{3} \zeta_{7}+11\left(\zeta_{5}\right)^{2}-4 \zeta_{2} \zeta_{3} \zeta_{5}-6 \zeta_{4}\left(\zeta_{3}\right)^{2}\right]
\end{array}
$$

Successive loop ratios for NMHV Amplitude on $(u, u, 1)$

3-gluon form factor, Euclidean region, to 8 loops

LD, Ö. Gürdoğan, A. McLeod, M. Wilhelm, to appear

"Holy Grail" for Planar N=4 SYM Scattering

Images: A. Sever, N. Arkani-Hamed

It all started with a napkin!

Happy Birthday Volodya (et al)!

Dixon Scatering lteratively with Volodya

6 loops \rightarrow Sheldon Cooper ("Big Bang Theory")?

L. Dixon Scattering Iteratively with Volodya

Extras

Test at Thiree Loops Soon?

From talk at STRINGS 2004

- 3-loop planar $\mathrm{N}=4$ amplitude also dates from 1997
(3-particle cuts checked later)

Bern,
Rozowsky,
Yan (1997)

- Integrals now being computed:

Smirnov, in progress

- $1 / \varepsilon^{6}$ to $1 / \varepsilon^{2}$ poles predictable Sterman, Tejeda-Yeomans, hep-ph/0210130
- Works to order computed so far -- $1 / \varepsilon^{3}$

Usual approaches vs. bootstrap

Draw/evaluate all Feynman diagrams
Unitarity method
Compute loop momentum integrand

Evaluate loop momentum integrals

Kinematical playground

Multi-particle factorization $u, w \rightarrow \infty,{ }^{\prime}$

Double-parton-scattering-like limit

Georgiou, 0904.4675; LD, Esterlis, 1602.02107

- Self-crossing limit of Wilson loop, $\delta \sim|z|^{2} \rightarrow 0$
- Overlaps MRK limit
- A virtual Sudakov region, $\quad A \sim \exp \left[-\ln ^{2} \delta\right]$
- Singularities ~ Wilson line RGE

Korchemsky and Korchemskaya hep-ph/9409446

