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What this talk is about

This talk is about the implications of (i) (super) Weyl invariance and
(ii) SL(2,R) duality invariance on the structure of effective actions
in supersymmetric theories with local couplings.

Related earlier works:
H. Osborn, Local couplings and Sl(2,R) invariance for gauge theories
at one loop, Phys. Lett. B 561, 174 (2003);
I. L. Buchbinder, N. G. Pletnev and A. A. Tseytlin, Induced N=4
conformal supergravity, Phys. Lett. B 717, 274 (2012).
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Electromagnetic duality: Maxwell’s theory

Maxwell’s electrodynamics is the simplest and oldest example of a
duality-invariant theory in four spacetime dimensions.

LMaxwell(F ) = −1

4
F abFab =

1

2

(
~E 2 − ~B2

)
, Fab = ∂aAb − ∂bAa

The Bianchi identity and the equation of motion read

∂bF̃ab = 0 , ∂bFab = 0

where F̃ab := 1
2 εabcd F

cd is the Hodge dual of F .

Since these differential equations have the same functional form, one
may consider so-called duality rotations

F + iF̃ → eiϕ
(
F + iF̃

)
⇐⇒ ~E + i~B → eiϕ

(
~E + i~B

)
, ϕ ∈ R

Lagrangian LMaxwell(F ) changes, but the energy-momentum tensor

T ab =
1

2

(
F + iF̃

)ac(
F − iF̃

)bd
ηcd = F acF bdηcd −

1

4
ηabF cdFcd

is invariant under U(1) duality transformations.



Electromagnetic duality: Nonlinear electrodynamics

U(1) duality invariance of Born-Infeld theory Schrödinger (1935)

Patterns of duality invariance in extended supergravity
Ferrara, Scherk & Zumino (1977)

Cremmer & Julia (1979)

General theory of duality invariance in four dimensions
Gaillard & Zumino (1981)

Gibbons & Rasheed (1995)
Gaillard & Zumino (1997)

General theory of duality invariance in higher dimensions
Gibbons & Rasheed (1995)

Araki &Tanii (1999)
Aschieri, Brace, Morariu & Zumino (2000)

General theory of duality invariance for N = 1 and N = 2
supersymmetric nonlinear electrodynamics

SMK & Theisen (2000)
Partial SUSY breaking often implies U(1) duality invariance

Duality invariance as manifest U(1) invariance of self-interaction
Ivanov & Zupnik (2001,2002)



U(1) duality in nonlinear electrodynamics

Nonlinear electrodynamics

L(Fab) = −1

4
F abFab +O(F 4)

Using the definition

G̃ab(F ) :=
1

2
εabcd G

cd(F ) = 2
∂L(F )

∂F ab
, G (F ) = F̃ +O(F 3),

the Bianchi identity (BI) and the equation of motion (EoM) read

∂bF̃ab = 0 , ∂bG̃ab = 0 .

The same functional form of BI and EOM gives us a rationale to
introduce a duality transformation(

G ′(F ′)
F ′

)
=

(
a b
c d

) (
G (F )
F

)
,

(
a b
c d

)
∈ GL(2,R)

For G ′(F ′) one should require

G̃ ′ab(F ′) = 2
∂L′(F ′)

∂F ′ab

Transformed Lagrangian, L′(F ), always exists.



U(1) duality in nonlinear electrodynamics

The above considerations become nontrivial if the model is required to be
duality invariant (self-dual)

L′(F ) = L(F ) .

The requirement of self-duality implies the following:

Only U(1) duality transformations can consistently be defined in the
nonlinear case.(

G ′(F ′)
F ′

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

) (
G (F )
F

)
Maxwell’s theory also allows scale duality transformations which,
however, are forbidden if the energy-momentum tensor is required to
be duality invariant.

The Lagrangian is a solution of the self-duality equation

G ab G̃ab + F ab F̃ab = 0 , G̃ab(F ) = 2
∂L(F )

∂F ab

Gibbons & Rasheed (1995) Gaillard & Zumino (1997)



Properties of U(1) duality-invariant models

Duality invariance of the energy-momentum tensor.

SL(2,R) duality invariance in the presence of dilaton and axion.

Self-duality under Legendre transformation.

Legendre transformation for nonlinear electrodynamics L(F ).

1 Associate with L(F ) an equivalent auxiliary model defined by

L(F ,FD) = L(F )− 1

2
F · F̃D , FD

ab = ∂aAD
b − ∂bAD

a ,

in which Fab is an unconstrained two-form (auxiliary field).

2 Eliminate Fab using its equation of motions G (F ) = FD to yield

LD(FD) :=
(
L(F )− 1

2
F · F̃D

) ∣∣∣
F=F (FD)

.

3 If L(F ) solves the self-duality equation G · G̃ + F · F̃ = 0, then

LD(F ) = L(F ) .

Self-dual electrodynamics



General structure of dualiy-invariant electrodynamics

Given a model for nonlinear electrodynamics, its Lagrangian L(Fab)
can be realised as a real function of one complex variable,

L(Fab) = L(ω, ω̄) , ω = α + iβ = FαβFαβ ,

where α = 1
4 F

abFab and β = 1
4 F

abF̃ab are the EM invariants.

L(ω, ω̄) = −1

2

(
ω + ω̄

)
+ ω ω̄ Λ(ω, ω̄) .

Self-duality equation (SDE), G · G̃ + F · F̃ = 0, turns into

Im

{
∂(ω Λ)

∂ω
− ω̄

(
∂(ω Λ)

∂ω

)2}
= 0 .

Simplest solutions:
1 Maxwell’s theory L(ω, ω̄) = − 1

2

(
ω + ω̄

)
2 Born-Infeld theory

LBI(ω, ω̄) = 1
g2

{
1−

√
1 + g 2(ω + ω̄) + 1

4
g 4(ω − ω̄)2

}



Conformal duality-invariant electrodynamics

ModMax theory

Lconf(ω, ω̄) = −1

2
cosh γ

(
ω + ω̄

)
+ sinh γ

√
ωω̄ ,

with γ a positive parameter.
Bandos, Lechner, Sorokin & Townsend arXiv:2007.09092

Kosyakov arXiv:2007.13878



Coupling to the dilaton and axion

Given a U(1) duality-invariant model, L(Fab) = L(ω, ω̄), its compact
duality group U(1) is enhanced to the non-compact SL(2,R) group
by coupling Fab to dilaton ϕ and axion a by replacing

L(ω, ω̄) → L(ω, ω̄, τ, τ̄) = L(τ2ω, τ2ω̄) +
i

2
τ1(ω̄ − ω) ,

τ = τ1 + i τ2 = a + i e−ϕ .

The duality group acts by transformations(
G ′

F ′

)
=

(
a b
c d

)(
G
F

)
, τ ′ =

aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,R)

Maxwell’s theory coupled to the dilaton and axion

L(F , τ, τ̄) = −1

4
e−ϕF abFab +

1

4
aF̃ abFab

is Weyl invariant (conformal in flat space), with τ being Weyl inert.
τ & τ̄ local couplings.
Non-minimal operator =⇒ generalised heat kernel techniques.



Quantum theory

Let Γ(τ, τ̄) be the effective action obtained by integrating out the
gauge field in the path integral.

Both Weyl and rigid SL(2,R) duality transformations are anomalous
at the quantum level. However, the logarithmically divergent part of
Γ(τ, τ̄) is invariant under these transformations.

General structure of the logarithmic divergence of Γ(τ, τ̄)

L =
1

2(Im τ)2

[
D2τD2τ̄ − 2(Rab −

1

3
ηabR)∇aτ∇b τ̄

]
+

1

12(Im τ)4

[
α∇aτ∇aτ∇b τ̄∇b τ̄ + β∇aτ∇aτ̄∇bτ∇b τ̄

]
where D2τ := ∇a∇aτ + i

Im τ
∇aτ∇aτ , and α and β are numerical parameters.

Osborn (2003)∫
d4x e L is Weyl and SL(2,R) invariant.

General structure of Weyl anomaly

δσΓ(τ, τ̄) ∝
∫

d4x e σ L



What about a supersymmetric extension?

Weyl invariance of
∫
d4x e L follows from the fact that the

fourth-order Fradkin-Tseytlin operator (1982)

∆0 = (∇a∇a)2 + 2∇a
(
Rab∇b − 1

3R∇a

)
is conformal.
(∆0 was re-discovered by Paneitz in 1983 and Riegert in 1984.)

Soon after the 2003 work by Osborn several attempts were made to
extend his construction to supersymmetric case. No success was
achieved until 2020, perhaps, due to the following two reasons:

1 N = 1 supersymmetric extension of the Fradkin-Tseytlin operator
operator was constructed only in 2013 by

Butter, de Wit, SMK & Lodato (2013)
2 Effective action corresponding to the vector multiplet model

S [V ; Φ, Φ̄] = − i

4

∫
d4xd2θ E ΦW α(V )Wα(V ) + c.c. ,

where Wα(V ) = − 1
4
(D̄2 − 4R)DαV , involves determinants of

non-minimal differential operators which are much harder to evaluate
than in the non-supersymmetric case.



Grimm-Wess-Zumino superspace geometry (1978)

Superspace covariant derivatives

DA := (Da,Dα, D̄α̇) = EA
M∂M + ΩA

βγMβγ + Ω̄A
β̇γ̇M̄β̇γ̇ .

Graded commutation relations

{Dα, D̄α̇} = −2iDαα̇ ,
{Dα,Dβ} = −4R̄Mαβ , {D̄α̇, D̄β̇} = 4RM̄α̇β̇ ,[
Dα,Dββ̇

]
= iεαβ

(
R̄ D̄β̇ + Gγβ̇Dγ − (DγG δβ̇)Mγδ + 2W̄β̇

γ̇δ̇M̄γ̇δ̇

)
+i(D̄β̇R̄)Mαβ .

Torsion superfields R, Gαα̇ = Ḡαα̇ and Wαβγ obey the Bianchi identities:

D̄α̇R = 0 , D̄α̇Wαβγ = 0 , D̄α̇Gαα̇ = DαR

R, Gαα̇ and Wαβγ are supergravity analogues of the scalar curvature,
traceless Ricci tensor and self-dual Weyl tensor, respectively.



Super-Weyl transformations

Howe & Tucker (1978)

δσDα = (σ̄ − 1

2
σ)Dα + (Dβσ)Mαβ ,

δσD̄α̇ = (σ − 1

2
σ̄)D̄α̇ + (D̄β̇ σ̄)M̄α̇β̇ ,

δσDαα̇ =
1

2
(σ + σ̄)Dαα̇ +

i

2
(D̄α̇σ̄)Dα +

i

2
(Dασ)D̄α̇

+(Dβα̇σ)Mαβ + (Dαβ̇ σ̄)M̄α̇β̇ ,

where the super-Weyl parameter σ is covariantly chiral, D̄α̇σ = 0.
The torsion tensors transform as follows:

δσR = 2σR +
1

4
(D̄2 − 4R)σ̄ ,

δσGαα̇ =
1

2
(σ + σ̄)Gαα̇ + iDαα̇(σ − σ̄) ,

δσWαβγ =
3

2
σWαβγ .



Supersymmetric extension of Fradkin-Tseytlin operator

Butter, de Wit, SMK & Lodato (2013)

Operator

∆cΦ̄ := − 1

64
(D̄2 − 4R)

{
D2D̄2Φ̄ + 8Dα(Gαα̇D̄α̇Φ̄)

}
, D̄α̇∆cΦ̄ = 0

is superconformal: its super-Weyl transformation law is

δσ∆cΦ̄ = 3σ∆cΦ̄ .

Given two super-Weyl neutral chiral scalars Φ and Ψ, the functional∫
d4xd2θ E Ψ∆cΦ̄ =

1

16

∫
d4xd2θd2θ̄ E

{
D2ΨD̄2Φ̄− 8DαΨGαα̇D̄α̇Φ̄

}
is super-Weyl invariant.
Important identity

δσ
{
D2D̄2Φ̄ + 8Dα(Gαα̇D̄α̇Φ̄)

}
= (σ + σ̄)

{
D2D̄2Φ̄ + 8Dα(Gαα̇D̄α̇Φ̄)

}
+2D̄α̇

{
(D̄α̇Φ̄)D2σ + 4i(Dαα̇Φ̄)Dασ

}
.



Duality-invariant supersymmetric electrodynamics

SL(2,R) duality-invariant coupling of the dilaton-axion multiplet to
general models for self-dual supersymmetric electrodynamics

SΛ[V ; Φ, Φ̄] = − i

4

∫
d4xd2θ E ΦW 2 + c.c.

− 1

16

∫
d4xd2θd2θ̄ E (Φ− Φ̄)2W 2 W̄ 2Λ (ω, ω̄) ,

where Φ is the dilaton-axion multiplet,

ω =
i

2
(Φ̄− Φ)u , u :=

1

8
(D2 − 4R̄)W 2 ,

and Λ(ω, ω̄) is the same as in the supersymmetric case.

Superconformal model S [V ; Φ, Φ̄]: Λ(ω, ω̄) = 0

Logarithmic divergence of the effective action

eiΓ[Φ,Φ̄] =
∫

[DV ] eiS[V ;Φ,Φ̄]

should be invariant under SL(2,R) and super-Weyl transformations.



Superconformal higher-derivative sigma model

Let K (ΦI , Φ̄J̄) be the Kähler potential of a Kähler manifold M.
Associated with M is a higher-derivative sigma model described in
terms of covariantly chiral scalar superfields ΦI , D̄α̇ΦI = 0.

S =
1

16

∫
d4xd2θd2θ̄ E

[
gI J̄(Φ, Φ̄)

{
∇2ΦI ∇̄2Φ̄J̄ − 8Gαα̇DαΦI D̄α̇Φ̄J̄

}
+
{
αRI J̄KL̄(Φ, Φ̄) + βgI J̄(Φ, Φ̄)gKL̄(Φ, Φ̄)

}
DαΦIDαΦK D̄α̇Φ̄J̄D̄α̇Φ̄L̄

]
where α and β are constants, gI J̄ = ∂I∂J̄K is the Kähler metric,
RI J̄KL̄ the Riemann curvature of the Kähler manifold, and

∇2ΦI = D2ΦI + ΓI
KLDαΦKDαΦL .

The action proves to be super-Weyl invariant provided the chiral
scalars ΦI are neutral under the super-Weyl transformations.



General structure of super-Weyl anomalies

Purely supergravity-dependent part part

δσΓ = 2(a− c)

∫
d4xd2θ E σW αβγWαβγ + c.c.

+2a

∫
d4xd2θd2θ̄ E (σ + σ̄)(G aGa + 2RR̄) .

Bonora, Pasti &Tonin (1985)
Buchbinder & SMK (1986)

Contribution of the local couplings

δσΓ =
1

16

∫
d4xd2θd2θ̄ E (σ + σ̄)

×
[
gI J̄(Φ, Φ̄)

{
∇2ΦI ∇̄2Φ̄J̄ − 8Gαα̇DαΦI D̄α̇Φ̄J̄

}
+αRI J̄KL̄(Φ, Φ̄)DαΦIDαΦK D̄α̇Φ̄J̄D̄α̇Φ̄L̄

]
.

SMK (2020)

Wess-Zumino consistency condition: [δσ2 , δσ1 ]Γ = 0



Final results for the vector multiplet model

S [V ; Φ, Φ̄] = − i

4

∫
d4xd2θ E ΦW α(V )Wα(V ) + c.c.

Logarithmically divergent part of the effective action

Γdiv = − 1

512π2ω

∫
d4xd2θd2θ̄ E

{
∇2Φ∇̄2Φ̄− 8DαΦGαα̇D̄α̇Φ̄

(Φ− Φ̄)2

−D
αΦDαΦD̄α̇Φ̄D̄α̇Φ̄

(Φ− Φ̄)4

}
.

Super-Weyl anomaly

δσΓ =
1

512π2

∫
d4xd2θd2θ̄ E (σ + σ̄)

×
{
∇2Φ∇̄2Φ̄− 8DαΦGαα̇D̄α̇Φ̄

(Φ− Φ̄)2
− D

αΦDαΦD̄α̇Φ̄D̄α̇Φ̄

(Φ− Φ̄)4

}
.



Interesting open problem

It is interesting to extend the quantum analysis to the case of local
N = 2 supersymmetry. The corresponding vector multiplet action:

S [V;X , X̄ ] = − i

8

∫
d4xd4θ E X

(
W (V)

)2

+ c.c.

X is a background chiral scalar superfield containing the dilaton and
axion as the lowest component
W is the field strength of a vector multiplet,

D̄α̇i W = 0 ,
(
Dij + 4S ij

)
W =

(
D̄ij + 4S̄ ij

)
W̄

N = 2 superconformal higher-derivative sigma model
Gomis, Hsin, Komargodski, Schwimmer, Seiberg & Theisen (2016)

S =

∫
d4xd4θd4θ̄ E K (X I , X̄ J̄) , D̄α̇i X I = 0 , δσX

I = 0 .

The action is (i) Kähler invariant; and (ii) super-Weyl invariant, with
the chiral multiplets X I being super-Weyl inert.



N = 2→ N = 1 superspace reduction

N = 2 superconformal higher-derivative sigma model in Minkowski
superspace

S =

∫
d4xd4θd4θ̄K (X I , X̄ J̄) , D̄α̇

i X
I = 0 .

N = 2 chiral superfield X I is equivalent to three N = 1 chiral
superfields ΦI , λIα and Z I defined by

ΦI := X I
∣∣
θ2=0

,
√

2ΩI
α := D2

αX
I
∣∣
θ2=0

, Z I := −1

4
(D2)2X I

∣∣
θ2=0

.

Reducing the action to N = 1 superspace gives

S =
1

16

∫
d4xd2θd2θ̄

{
gI J̄∇

2ΦI ∇̄2Φ̄J̄ + RI J̄KL̄D
αΦIDαΦK D̄α̇Φ̄Ī D̄α̇Φ̄L̄

}
+

∫
d4xd2θd2θ̄ gI J̄

{
ZI Z̄J̄ − iΩIα∇αα̇Ω̄J̄α̇

}
,

where

ZI := Z I − 1

4
ΓI
JKΩJαΩK

α , ∇αα̇Ω̄Ī α̇ = ∂αα̇Ω̄J̄α̇ + ΓĪ
J̄K̄∂αα̇Φ̄J̄Ω̄K̄ α̇ .



Interesting open problem

In the absence of scalars, U(n) is the largest duality group of n
Abelian vector fields.

Sp(2n,R) is the maximal duality group of n Abelian vector fields in
the presence of scalar τ ’s parametrising the homogeneous space
Sp(2n,R)/U(n).

Gaillard & Zumino (1981)

It would be interesting to compute the low-energy effective for a
superconformal Sp(2n,R) duality-invariant model of n > 2 vector
multiplets Vi coupled to a background n × n matrix chiral superfield
Φ = (Φij),

ΦT = Φ , i(Φ̄− Φ) > 0 ,

which parametrises the Hermitian symmetric space Sp(2n,R)/U(n).
The classical action is

S [V ; Φ, Φ̄] = − i

4

∫
d4xd2θ EW α(V )TΦWα(V ) + c.c.



Thank you!
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