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Congratulations!

My congratulations to all heros of the event!
I am very grateful to Vladimir Smirnov for pleasant

and fruitful collaboration during many years.
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Motivation

• If we want to detect deviations (new physics) from SM, we need to
know the predictions of the latter with high precision. In particular,
we have to be able to calculate two-loop radiative corrections to
various processes [A. Arbuzov’s talk yesterday].

• Only quite recently the methods of multiloop calculations have
reached the point where they can be really helpful with this goal.

• Besides these practical purposes, multiloop calculations provide a
perfect polygon for trying the methods from various mathematical
fields: differential equations, complex analysis, number theory

algebraic geometry etc.
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Modern approach to diagrams calculation

1 Consider a family of integrals

j(n1, . . . , nN) =

∫
dd l1 . . . d

d lL
Dn1

1 . . .DnN
N

.

Integrals are functions of kinematic variables xi and d = 4− 2ε.

2 Arrange IBP reduction [Chetyrkin and Tkachov, 1981, Laporta,
2000] to master integrals j = (j1, . . . js)ᵀ [V. Smirnov’s talk today].

3 Find differential equations [Kotikov, 1991, Remiddi, 1997] (and/or
dimensional recurrences [Tarasov, 1996]) for master integrals

Differential equations

∂

∂xi
j = M(x , ε)j

Dimensional recurrences

j (ε+ 1) = R(x , ε)j (ε)

M and R are n × n matrices rational in x and ε.

4 Find general solution.

5 Use other methods for boundary conditions.
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IBP reduction
Note on phase-space integrals

• Phase-space integrals can be transformed in a standard way into
loop integrals with cut propagator:

dd−1p

(2π)d−12εp
=

ddp

(2π)d
2πδ+

(
p2 −m2

)
=

dd−1p

(2π)d
(−i)

∮
εp

dp0

(
p2 −m2

)−1

• As IBP identities are insensitive to the integration contour, provided
that it does not lead to surface terms, we can treat the cut
propagators in the same way as uncut ones.

• There are two things to take care of: first, shift symmetries which
mix cut with uncut denominators should be omitted, second,
positive (integer) powers of cut denominators are equal to zero.
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ε-form

Differential equation

∂J (x) /∂x = M(x , ε)J (x)

Function change

J (x) = T (x , ε)J̃ (x)

In particular, we can choose master integrals in infinitely many ways.

Remarkable observation [Henn, 2013]

There often exists a choice of master integrals such that

∂J̃ (x) /∂x = εS(x)J̃ (x)

This form makes finding a solution in the form of ε-expansion very simple.

How to find canonical basis?
Algorithmic approach [RL, 2015]: general idea

Perform many “elementary” transformations gradually
improving properties of the system.
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General structure of reduction algorithm

Algorithm proceeds in three major stages, each involving a sequence of
“elementary” transformations.

1. “Fuchsification”: Eliminating higher-order poles

Input: Rational matrix M (x , ε)
Output: Rational matrix with only simple poles on the extended complex

plane, M (x , ε) =
∑

k
Mk (ε)
x−ak .

2. Normalization: Normalizing eigenvalues

Input: Matrix from the previous step, M (x , ε) =
∑

k
Mk (ε)
x−ak .

Output: Matrix of the same form, but with the eigenvalues of all Mk (ε)
being proportional to ε.

3. Factorization: Factoring out ε

Input: Matrix from the previous step.
Output: Matrix in ε-form, M (x , ε) = εS(x) = ε

∑
k

Sk

x−ak .
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Balance

Balance transformation

T (x) = P +
x − x2

x − x1
P ,

where P is some projector and
P = I − P. When x1 =∞ or x2 =∞
omit denominator/numerator.

Balance transformation changes
properties (pole order and eigenvalues of
matrix residue) of the differential system
at x = x1 and x = x2 only.

x1

x2
P

Programs

Further details of the algorithm deserve a special talk, but the good news
is that we now have programs! At least, three public ones: epsilon,
Fuchsia, Libra.
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Libra interface for reduction

Automatic tool (useful for simple cases)

In[1]: t=Rookie[M,x,ε];

Interactive tool (useful for most cases)

In[1]: t=VisTransformation[M,x,ε];

Manual tool (useful for really hard cases)

In[1]: u=GetSubspaces[M,{x,0},ε][[1]];v=GetSubspaces[M...

Factoring ε

In[2]: t=FactorOut[M,x,ε,µ];
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General solution

Differential system in ε-form

∂xJ = εS(x)J , S(x) =
∑
k

Sk
x − ak

.

General solution (evolution operator)

U(x , x0) = Pexp

[
ε

x∫
x0

dx1 S(x1)

]

In[3]: U=PexpExpansion[{S,6},x];

Goncharov polylogarithms

So, U(x , x0) is expressed via Goncharov polylogs [Goncharov, 1998]

G(an, . . . , a1|x) =

∫∫∫∫
x>xn>...>x1>0

dx1

x1 − a1
. . .

dxn
xn − an

Perfect class of functions: numerical evaluation, analytic continuation,
series representation, functional identities, relations to classical polylogs.
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Boundary conditions

Suppose we have found a transformation T (x) = T (x , ε) to ε-form,
j = TJ . Then we can write

J(x) = U(x , x0)J(x0),

j (x) = T (x)U(x , x0)[T (x0)]−1j (x0)

But the point x0 should be somewhat special to simplify the evaluation of
j (x0) as compared to j (x). With no known exceptions, ”special” boils
down to ”singular”, i.e., we can expect simplifications for x0 being a
singular point of the differential system. Let it be x0 = 0 for simplicity.

Problem

U(x , x0) diverges when x0 tends to zero. Therefore, we have to consider
not the values, but the asymptotics of j (x0) at x = 0.

11 / 21
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Boundary conditions

Regularized evolution operator

U(x , 0) = lim
x0→0

U(x , x0)xεS0
0 ,

where S0 = Resx=0 S(x).

1 U(x , 0) has no divergences.

2 U(x , 0) is a general solution.

3 U(x , 0)→ xεS0 when x → 0.

Specific solution reads j (x) = T (x)U(x , 0)C . The column of boundary
constants C can be fixed by evaluating some coefficients in the
asymptotics of j (x) when x → 0.

Good news

Libra can determine which asymptotic coefficients, c , are sufficient to
calculate and find the “adapter” matrix L in C = Lc .
NB: for regular point, of course, c = j (0) and L = T−1(0).

In[4]: {L,cs}=GetLcs[S,T,{x,0}];
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Example: boundary conditions for σe−γ→e−γ @NLO

The following threshold (s → 1, x → 0) asymptotic coefficients are to be
calculated:[ ]

y2−4ε

,

[ ]
y−2

,

[ ]
y4−8ε,y2−4ε,y4ε−2

,

[ ]
y−4ε,y4ε−2

,[ ]
y−2,y−4ε

,

[ ]
y−3

,

[ ]
y−2,y−4ε

,

[ ]
y−4ε−2

,[ ]
y−2ε−3,y4ε−2

,

[ ]
y−4

,

[ ]
y4−8ε

,

[ ]
y−4ε

,

[ ]
y−4ε

,[ ]
y−4ε

,

[ ]
y−4

,

[ ]
y−4

,

[ ]
y−4

,

[ ]
y−2ε−5

.

Here
[
integral

]
xα denotes the coefficient in front of xα in the small-x

asymptotics of integral (x ≈ 1
2

√
s − 1).
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Example: Boundary conditions for σe−γ→e−γ @NLO
[RL,Lyubyakin,Stocky(2020); RL,Schwartz,Zhang (2021)]

• Selection rule by the fractional power nε leaves us with 11 possibly
nonzero constants.The fractional power −4ε corresponds to the hard
momentum flowing over the black lines, while −8ε — to soft
momentum.

• Selection rule by integer power reduces the number to 5.

[ ]
x2−4ε

,

[ ]
x4−8ε,x2−4ε

,

[ ]
x−4ε

,[ ]
x−4ε

,

[ ]
x−4ε

,

[ ]
x−4ε−2

,[ ]
x4−8ε

,

[ ]
x−4ε

,

[ ]
x−4ε

,

[ ]
x−4ε

.
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General solution, Frobenius method

In many applications there is a natural small parameter. E.g., for
e+e− → X the electron mass is small, but can not be put to zero.
Instead one should expand the regularized evolution operator

U(x , 0) = lim
x0→0

U(x , x0)xS0
0

in generalized power series. Libra has tools for it. It closely follows the
approach described in Ref. [RL, Smirnov, and Smirnov, 2018].

U(x , 0) as generalized power series

Recursion data for (matrix) coefficients of U:
In[1]: sdata=SeriesSolutionData[S,x,x];

Using data for expanding to fixed order:
In[2]: Uexp=ConstructSeriesSolution[sdata,x,6];

15 / 21
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Algebraic extensions

• Sometimes, in order to find the transformation to ε-form, one has to
extend the class of transformations by passing from x to y , such
that x = x(y) is some rational function. Libra has tool for it:
In[1]: ChangeVar[ds,x→(4 y*y)/(1 - y*y),y];

• Moreover, in many cases there is no common rationalizing variable.
Thus, Libra implements a more powerful way to treat such algebraic
extensions, with
In[1]: AddNotation[ds,y → x(1-y*y) - 4 y*y];

One may add as many notations as needed, and Libra will take care
of them (minimizing their appearance, correctly treating their
differentiation).

• There is a bunch of functions related to treating the algebraic
extensions: QuolyMod, DiffMod, SeriesCoefficientMod,

EValuesMod, etc. These functions can be used also to treat
irreducible denominators, like x2 + x + 1 in a way which do not
introduce radicals.

16 / 21
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that x = x(y) is some rational function. Libra has tool for it:
In[1]: ChangeVar[ds,x→(4 y*y)/(1 - y*y),y];

• Moreover, in many cases there is no common rationalizing variable.
Thus, Libra implements a more powerful way to treat such algebraic
extensions, with
In[1]: AddNotation[ds,y → x(1-y*y) - 4 y*y];

One may add as many notations as needed, and Libra will take care
of them (minimizing their appearance, correctly treating their
differentiation).

• There is a bunch of functions related to treating the algebraic
extensions: QuolyMod, DiffMod, SeriesCoefficientMod,

EValuesMod, etc. These functions can be used also to treat
irreducible denominators, like x2 + x + 1 in a way which do not
introduce radicals.
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Irreducible cases

• As we know, even with algebraic extensions it is not always possible
to reduce the system to ε-form. Sometimes the integrals just can
not be expressed via polylogs, [see D. Broadhurst’s talk yesterday].

• In Ref. [RL and Pomeransky, 2017] the criterion of irreducibility has
been derived. The reducibility has been shown to correspond to
triviality of some holomorphic vector bundle on the Riemann sphere.
Thanks to Birkhoff-Grothendieck theorem, it is possible to
constructively decide this. Libra has the corresponding tool: the
command
In[3]: {T1,T2,T3}= BirkhoffGrothendieck[T,x];

decomposes Laurent-polynomial matrix T into the product T1T2T3,
where T1,T

−1
1 are polynomial in x , T3,T

−1
3 are polynomial in x−1,

and T2 = diag(xn1 , . . . xnk ). The bundle is trivial iff T2 = 1.
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Summary

• Modern multiloop calculation techniques can really help in NNLO
calculation useful for the experiments.

• Libra can really help in applying the differential equations method.
It has tools

for the reduction of the differential system to ε-form,
for the construction of general solution in terms of Goncharov’s
polylogs,
for determining the minimal set of asymptotic coefficients to be
evaluated to fix the boundary conditions,
for constructing Frobenius expansion,
for treating the algebraic extensions,
for detecting the irreducible cases.
It can work with univariate and multivariate systems.
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Outlook

• Libra improvements:

Improve automatic tool Rookie[M,x,ε].
Better treatment of algebraic extensions, especially, for multivariate
case.

• Differential equations method:

construct a systematic approach to irreducible cases. In particular,
Birkhoff-Grothendieck factorizations seems to be carry a lot of
information yet to be properly understood and used.
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