Advances in Supersymmetric QFT and Deautonomization of Integrable Systems

Andrei Marshakov
Center for Advanced Studies, Skoltech;
Dept Math HSE, ITEP, Lebedev

Advances in QFT
JINR, Dubna, October 2021

- $\mathcal{N}=2$ supersymmetric gauge theory beyond loop calculus;
- Old story: prepotentials and integrable systems;
- Effective equations for partition function: deautonomization;
- Solutions: instanton interpretation when possible;
- Derivation: lift to 5d;
- Perspectives ...
with M.Bershtein, P.Gavrylenko, M.Semenyakin, A.Stoyan

Supersymmetric gauge theory

4d $\mathcal{N}=2$ supersymmetric Yang-Mills theory:

$$
\begin{equation*}
\mathcal{L}_{0}=\frac{1}{g_{0}^{2}} \operatorname{Tr}\left(\mathrm{~F}_{\mu \nu}^{2}+\left|D_{\mu} \Phi\right|^{2}+\left[\Phi, \Phi^{\dagger}\right]^{2}+\text { fermions }\right)+\frac{\vartheta_{0}}{2 \pi} \operatorname{Tr} F \wedge F \tag{1}
\end{equation*}
$$

- Higgs condensate $\langle\Phi\rangle$ breaks gauge group to Abelian: Coulomb branch;
- Moduli space of the theory: $u \sim\left\langle\operatorname{Tr} \Phi^{2}\right\rangle$, generally

$$
\begin{equation*}
P(\lambda ; u)=\langle\operatorname{det}(\lambda-\Phi)\rangle \tag{2}
\end{equation*}
$$

- Aim: effective $U(1)^{\mathrm{rank} G}$ Abelian theory in IR.

Supersymmetry and loop corrections

- Gauge coupling $\frac{1}{g^{2}} \sim \beta \log \frac{|u|}{\Lambda^{2}}$: exact 1-loop RG formula;
- $\beta=2 N-N_{f} \geq 0 \ldots$ UV completion (?!);

- Complexification: $i \frac{4 \pi^{2}}{g^{2}}+\frac{\vartheta}{2 \pi}=\tau \sim \log \frac{u}{\Lambda^{2}}$ and $\mathcal{N}=2$ holomorphy;
- Works at $u \gg \Lambda^{2}$, naively at $u=0$ non-Abelian symmetry restores ...

SW theory: effective action

Obstruction: at $|u|<\Lambda^{2}$ e.g. one gets $\frac{1}{g^{2}} \sim \log \frac{|u|}{\Lambda^{2}}<0$.
Quantum moduli space for $G=S U(2)$

- non-Abelian symmetry never restores: around $a^{D}=0$ and $a+a^{D}=0$, EM-dual Abelian theory;
- Effective couplings in IR $U(1)^{\mathrm{rank} G}$ theory $\mathcal{L}_{\text {eff }}=\operatorname{Im} T_{i j}(a) F_{\mu \nu}^{i} F_{\mu \nu}^{j}+\ldots$
- $\mathcal{N}=2$ special Kähler geometry : holomorphic prepotential $T_{i j}=\frac{\partial^{2} \mathcal{F}}{\partial a_{i} \partial_{j}}$ (action $\operatorname{Im} \int d^{4} \theta \mathcal{F}(\Phi)$).

Prepotential expansions

At weak coupling:

$$
\mathcal{F}(a) \underset{a \rightarrow \infty}{\rightarrow} \frac{1}{2} a^{2} \log \frac{a}{\Lambda}+a^{2} \sum_{k>0} f_{k}\left(\frac{\Lambda}{a}\right)^{4 k}
$$

- Logarithm from $\mathcal{N}=2$ one loop;
- Expansion over instantons of charge k, in powers of $\Lambda^{\beta}=\Lambda^{2 N}=\Lambda^{4}$: a way to compute $\left\{f_{k}\right\}$.
and at strong coupling (monopole point $a_{D} \rightarrow 0$)

$$
\mathcal{F}_{D}\left(a_{D}\right) \underset{a_{D} \rightarrow 0}{\rightarrow}-\frac{1}{2} a_{D}^{2} \log \frac{a_{D}}{\Lambda}-8 \Lambda a_{D}+a_{D}^{2} \sum_{k>0} f_{k}^{D}\left(\frac{a_{D}}{\Lambda}\right)^{k}
$$

Different powers: no instantons in monopole theory! No way to compute $\left\{f_{k}^{D}\right\}$ other, than to solve an equation ...

Step 1: SW theory

SW: determined by Σ of genus=rank G,

Smooth Riemann surface (of genus 3) with fixed A - and B-cycles.

Lattice of charges $\Leftrightarrow H_{1}(\Sigma)$ with symplectic $\langle\rangle,,\left\langle A_{i}, B_{j}\right\rangle=\delta_{i j}$.
Period matrix: $\operatorname{Im} T_{i j} \geq 0, T \underset{\text { degeneration }}{\rightarrow} \log a$

Prepotential and IS

Σ with pair of differentials or $d S: \delta d S \simeq$ holomorphic, or by an integrable system:

$$
\begin{equation*}
a_{i}=\oint_{A_{i}} d S, \quad a_{i}^{D}=\oint_{B_{i}} d S=\frac{\partial \mathcal{F}}{\partial a_{i}} \tag{3}
\end{equation*}
$$

consistent by symmetricity of period matrix $\frac{\partial^{2} \mathcal{F}}{\partial a_{i} \partial a_{j}}=T_{i j}(a)(R B I)$.
Example (pure $\mathcal{N}=2$ gauge theory)

$$
\begin{equation*}
\Lambda^{N}\left(w+\frac{1}{w}\right)=P_{N}(\lambda)=\langle\operatorname{det}(\lambda-\Phi)\rangle=\prod_{i=1}^{N}\left(\lambda-v_{i}\right) \tag{4}
\end{equation*}
$$

with $\oint d \lambda=0, \oint \frac{d w}{w}=2 \pi i \mathbb{Z}$ so that $d S=\lambda \frac{d w}{w}$.
Does it \mathcal{F} satisfy any reasonable (integrable!?) equation?

Toda chains

- 'Oversimplified' $G=U(1): \Lambda\left(w+\frac{1}{w}\right)=\lambda-v$ gives $a=\oint \lambda \frac{d w}{w}=v$, $\mathcal{F}=\frac{1}{2} a^{2} \tau+e^{\tau}$, with $\Lambda^{2}=e^{\tau}$, satisfying

$$
\begin{equation*}
\frac{\partial^{2} \mathcal{F}}{\partial \tau^{2}}=\exp \frac{\partial^{2} \mathcal{F}}{\partial a^{2}} \tag{5}
\end{equation*}
$$

for the Toda tau-function $\mathcal{F}=\log \mathcal{T}$.

- Generally:
- Non-autonomous version of 'Toda-like' equations;
- In ε-deformed theory: instead of naive partition function $\mathcal{T} \stackrel{?}{\sim} Z(a, \tau) \sim e^{\mathcal{F} / \varepsilon^{2}}$ a Fourier transform $\left(\mathcal{F}_{D}=a a_{D}-\mathcal{F}\right)$

$$
\mathcal{T} \underset{\varepsilon \rightarrow 0}{\sim} \exp \left(\frac{\mathcal{F}_{D}}{\varepsilon^{2}}+O\left(\varepsilon^{2}\right)\right) \cdot \Theta(\ldots)
$$

- To derive: lift to 5d (with a compact dimension).

SU(2)/Painlevé

Outcome:

- Deautonomization: integrable (or isospectral) \Rightarrow isomonodromic system;
- 'SW Toda' (sine-Gordon) \Rightarrow Painlevé III

$$
\begin{equation*}
\frac{d^{2} q}{d \tau^{2}}+e^{2 \tau} \sinh q=0 \tag{6}
\end{equation*}
$$

- In conventional "isomonodromic" variables $\left(t \sim \Lambda^{4}, w \sim \sqrt{t} e^{q}\right)$

$$
\begin{equation*}
H\left(w, w^{\prime} ; t\right)=\frac{t w^{\prime 2}}{4 w^{2}}+\frac{w}{t}+\frac{1}{w}=\partial_{t} \log \mathcal{T}(t) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
w(t)^{-1}=\partial_{t} t \partial_{t} \log \mathcal{T}(t)=-t^{1 / 2} \frac{\mathcal{T}_{1}(t)^{2}}{\mathcal{T}(t)^{2}} \tag{8}
\end{equation*}
$$

Tau-functions

The isomonodromic tau functions

$$
\begin{equation*}
\mathcal{T}(t ; a, \eta) \underset{t \rightarrow 0}{=} \sum_{n} e^{4 \pi i n \eta} t^{(a+n)^{2}} \frac{\mathcal{B}(a+n, t)}{G(1+2(a+n)) G(1-2(a+n))} \tag{9}
\end{equation*}
$$

are expressed through partition functions of ε-deformed $S U(2)$ gauge theory.

- $t \sim \Lambda^{4},(a, \eta)$ are two yet independent integration constants, $t^{a^{2}}$ - classical part ;
- Barnes G-functions $G(a+1)=\Gamma(a) G(a) \underset{a \rightarrow \infty}{\sim} \exp \left(\frac{1}{2} a^{2} \log a\right)$;
- $\mathcal{B}(a, t)=\sum_{\lambda, \mu} t^{|\lambda|+|\mu|}\left(\frac{a+\ldots}{a+\ldots}\right)$: Nekrasov instanton partition function, $|\lambda|+|\mu|=k$;
- Lagrangian submanifold ($\left.\eta \rightarrow a_{D}=\partial \mathcal{F} / \partial a\right)$ appears at singularities of solution ...

Painlevé/SYM

- Analytic properties of the Painlevé solutions contain important information about non-perturbative SYM: Already $t \sim \Lambda^{4}$ gives $4=2 N$ pure $S U(2)$ beta-function ...
- Expansion in $t=\Lambda^{4}$ at $t \rightarrow 0$ and in $t^{-1 / 4}=\Lambda^{-1}$ at $t \rightarrow \infty$;
- Non-autonomous Toda equation

$$
\begin{equation*}
\partial_{t} t \partial_{t} \log \mathcal{T}(t)=-t^{1 / 2} \frac{\mathcal{T}_{1}(t)^{2}}{\mathcal{T}(t)^{2}} \tag{10}
\end{equation*}
$$

an analog of $\frac{\partial^{2} \mathcal{F}}{\partial \tau^{2}}=\exp \frac{\partial^{2} \mathcal{F}}{\partial a^{2}}$.

- 'Gravitational flows': the Nakajima-Yoshioka blow-up equations from simple analysis.

Blow-up from Painlevé

At singularity of solution

$$
\begin{gather*}
\mathcal{T}_{1}\left(t ; a, \eta_{\star}\right)=0 \\
e^{4 \pi i \eta_{\star}}=\frac{\Gamma(1+2 a)^{2}}{\Gamma(1-2 a)^{2}} t^{-2 a} \exp \left(\frac{\partial f(a, t)}{\partial a}\right) \tag{11}
\end{gather*}
$$

explicitly

$$
\begin{equation*}
\sum_{n \in \frac{1}{2}+\mathbb{Z}} \frac{t^{n^{2}} \frac{\Gamma(1+2 a)^{2 n}}{\Gamma(1-2 a)^{2 n}}}{G(1+2(a+n)) G(1-2(a+n))} \exp \left(n \frac{\partial f(a, t)}{\partial a}\right) \mathcal{B}(a+n, t)=0 \tag{12}
\end{equation*}
$$

which has the form

$$
\begin{equation*}
\sum(\ldots) Z\left(\ldots ; \epsilon_{1}-\epsilon_{2}\right) Z\left(\ldots ; \epsilon_{1}+\epsilon_{2}\right)=0 \tag{13}
\end{equation*}
$$

at both $\epsilon_{1}+\epsilon_{2}=0$ and $\epsilon_{1} \rightarrow 0$. Extends to strong coupling ...

Step 2: derivation from 5d

Lift SW theory to $5 \mathrm{~d}: \mathbb{R}^{4} \times \mathbb{S}^{1}$

$$
\begin{equation*}
\lambda+\frac{1}{\lambda}+\mu+\frac{z}{\mu}=u \tag{14}
\end{equation*}
$$

at $z \rightarrow 0$ for $u=2 \cosh a, \lambda=2 \cosh \zeta$

$$
\begin{equation*}
\mu=4 \sinh \frac{\zeta-a}{2} \sinh \frac{\zeta+a}{2} \tag{15}
\end{equation*}
$$

The period "matrix" ($=$ complexified coupling $\tau \sim \frac{\vartheta}{2 \pi}+i \frac{4 \pi^{2}}{g_{\mathrm{YM}}}$)

$$
\begin{equation*}
\tau \sim \int_{-a}^{a} d \log \sinh \frac{\zeta-a}{2} \sim \log \sinh a \tag{16}
\end{equation*}
$$

collects contributions from 5d KK modes.
5d Nekrasov functions from quantum mechanics on instanton moduli space!

IS on cluster varieties

- 'Relativization' of Toda, 'trigonometric' dependence;
- Integrable systems in Lie groups: cluster varieties;
- Quiver \mathcal{Q} with $|\mathcal{Q}|$ vertices, oriented edges \Rightarrow logarithmically constant bracket

$$
\begin{equation*}
\left\{x_{i}, x_{j}\right\}=\epsilon_{i j} x_{i} x_{j}, \quad i, j=1, \ldots,|\mathcal{Q}| \tag{17}
\end{equation*}
$$

(no sum!) with skew-symmetric

$$
\begin{equation*}
\epsilon_{i j}=\# \text { arrows }(i \rightarrow j)=-\epsilon_{j i} \tag{18}
\end{equation*}
$$

- Discrete flows from cluster mutations:

$$
\mu_{j}: \epsilon_{i k} \mapsto-\epsilon_{i k}, \text { if } i=j \text { or } k=j, \quad \epsilon_{i k} \mapsto \epsilon_{i k}+\frac{\epsilon_{i j}\left|\epsilon_{j k}\right|+\epsilon_{j k}\left|\epsilon_{i j}\right|}{2} \quad \text { otherwise, }
$$

the x-variables (Poisson map)

$$
\begin{equation*}
\mu_{j}: \quad x_{j} \rightarrow \frac{1}{x_{j}}, \quad x_{i} \rightarrow x_{i}\left(1+x_{j}^{\operatorname{sgn}\left(\epsilon_{i j}\right)}\right)^{\epsilon_{i j}}, i \neq j \tag{19}
\end{equation*}
$$

Cluster integrable system

- Defined by a convex Newton Polygon Δ : a curve $\Sigma \subset \mathbb{C}^{\times} \times \mathbb{C}^{\times}$

$$
\begin{equation*}
f_{\Delta}(\lambda, \mu)=\sum_{(a, b) \in \Delta} \lambda^{a} \mu^{b} f_{a, b}=0 \tag{20}
\end{equation*}
$$

endowed with $d \lambda / \lambda \wedge d \mu / \mu$, modulo $S L(2, \mathbb{Z})$.

- Realized on a cluster variety with Poisson structure

$$
\begin{equation*}
\left\{x_{i}, x_{j}\right\}=\epsilon_{i j} x_{i} x_{j}, \quad\left\{x_{i}\right\} \in\left(\mathbb{C}^{\times}\right)^{2 \operatorname{Area}(\Delta)} \tag{21}
\end{equation*}
$$

determined by \mathcal{Q}, with $\epsilon_{i j}=\# \operatorname{arrows}(i \rightarrow j)$.

- Integrability: Pick's formula

$$
\begin{equation*}
\operatorname{dim} \mathcal{X}=2 \operatorname{Area}(\Delta)-1=(B-3)+2 g \tag{22}
\end{equation*}
$$

Deautonomization: SU(2) Toda quiver

- Poisson quiver \mathcal{Q} :

defines the bracket

$$
\begin{equation*}
\left\{x_{i}, x_{i+1}\right\}=2 x_{i} x_{i+1}, \quad i=1, \ldots, 4 \tag{23}
\end{equation*}
$$

- $q=x_{1} x_{2} x_{3} x_{4}$ and $z=x_{1} x_{3}$ are in the center of Poisson algebra;
- Integrable system (relativistic Toda) on Poisson submanifold in affine group at $q=1$ (!);
- straightforward quantization $\hat{x}_{i} \hat{x}_{j}=p^{-2 \epsilon_{i j}} \hat{X}_{j} \hat{x}_{i}$ (q and $p-$ two ε-parameters).

Discrete flow

Abelian subgroup of the quiver MCG:

Discrete flow

Abelian subgroup of the quiver MCG:

Discrete flow

Abelian subgroup of the quiver MCG:

Discrete flow

Abelian subgroup of the quiver MCG:

Discrete flow

Abelian subgroup of the quiver MCG:

Deautonomization: flow

For $q=1$ the flow

$$
T:\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{2}\left(\frac{1+x_{3}}{1+x_{1}^{-1}}\right)^{2}, x_{1}^{-1}, x_{4}\left(\frac{1+x_{1}}{1+x_{3}^{-1}}\right)^{2}, x_{3}^{-1}\right)
$$

or

$$
T:\left(x_{1}, x_{2}, z, q\right) \mapsto\left(x_{2}\left(\frac{x_{1}+z}{x_{1}+1}\right)^{2}, x_{1}^{-1}, q z, q\right) \underset{q=1}{=}\left(x_{2}\left(\frac{x_{1}+z}{x_{1}+1}\right)^{2}, x_{1}^{-1}, z, q\right)
$$

preserves the Hamiltonian $\mathcal{H}=\sqrt{x_{1} x_{2}}+\frac{1}{\sqrt{x_{1} x_{2}}}+\sqrt{\frac{x_{1}}{x_{2}}}+z \sqrt{\frac{x_{2}}{x_{1}}}$.

Deautonomization: Painlevé

Let $x_{1} x_{2} x_{3} x_{4}=q \neq 1$

$$
T:\left(x_{1}, x_{2}, z, q\right) \mapsto\left(x_{2}\left(\frac{x_{1}+z}{x_{1}+1}\right)^{2}, x_{1}^{-1}, q z, q\right)
$$

Consider z as "time" $T: x(z) \mapsto x(q z)$, then $x_{1}=x(z), x_{2}=x^{-1}\left(q^{-1} z\right)$, satisfy

$$
x(q z) x\left(q^{-1} z\right)=\left(\frac{x(z)+z}{x(z)+1}\right)^{2}
$$

or q-Painlevé III_{3} equation.

Deautonomization: tau-functions

For the tau-functions $x(z)=z^{1 / 2} \frac{\mathcal{T}_{1}(z)^{2}}{\mathcal{T}_{0}(z)^{2}}$ one gets bilinear (non-autonomous!) Hirota equations

$$
\begin{aligned}
& \mathcal{T}_{0}(q z) \mathcal{T}_{0}\left(q^{-1} z\right)=\mathcal{T}_{0}(z)^{2}+z^{1 / 2} \mathcal{T}_{1}(z)^{2} \\
& \mathcal{T}_{1}(q z) \mathcal{T}_{1}\left(q^{-1} z\right)=\mathcal{T}_{1}(z)^{2}+z^{1 / 2} \mathcal{T}_{0}(z)^{2}
\end{aligned}
$$

Generally for the $\operatorname{SU}(N)_{k}$-Toda:

$$
\begin{gathered}
\mathcal{T}_{j}(q z) \mathcal{T}_{j}\left(q^{-1} z\right)=\mathcal{T}_{j}(z)^{2}+z^{1 / N} \mathcal{T}_{j+1}\left(q^{k / N_{z}}\right) \mathcal{T}_{j-1}\left(q^{-k / N_{z}}\right) \\
j \in \mathbb{Z} / N \mathbb{Z}
\end{gathered}
$$

Origin: mutation of tau-variables (dual to x-variables) ...

Deautonomization: solutions

Autonomous case: solution of Hirota relations in theta functions (Fay identities)
Deautonomization $q \neq 1$:

$$
\begin{equation*}
\mathcal{T}_{j}^{N, k}(\vec{u}, \vec{s} ; q \mid z)=\sum_{\vec{\Lambda} \in Q_{N-1}+\omega_{j}} s^{\wedge} \mathcal{Z}_{N, k}\left(\vec{u} q^{\vec{\wedge}} ; q^{-1}, q \mid z\right) \tag{24}
\end{equation*}
$$

with $\mathcal{Z}_{N, k}=\mathcal{Z}_{\mathrm{cl}}^{N, k} \cdot \mathcal{Z}_{\text {1loop }}^{N} \cdot \mathcal{Z}_{\text {inst }}^{N, k}$ being 5 d Nekrasov functions.

Deautonomization: 5d SYM

Here:

$$
\begin{gathered}
\mathcal{Z}_{\mathrm{cl}}^{N, k}=\exp \left(\log z \frac{\sum\left(\log u_{i}\right)^{2}}{-2 \log q_{1} \log q_{2}}+k \frac{\sum\left(\log u_{i}\right)^{3}}{-6 \log q_{1} \log q_{2}}\right) \\
\mathcal{Z}_{\text {1loop }}^{N}=\prod_{1 \leq i \neq j \leq N}\left(u_{i} / u_{j} ; q_{1}, q_{2}\right)_{\infty}, \quad \mathcal{Z}_{\text {inst }}^{N, k}=\sum_{\vec{\lambda}} \frac{z^{|\vec{\lambda}|} \prod_{i=1}^{N} \top_{\lambda^{(i)}}\left(u ; q_{1}, q_{2}\right)^{k}}{\prod_{i, j=1}^{N} N_{\lambda^{(i)}, \lambda^{(j)}}\left(u_{i} / u_{j} ; q_{1}, q_{2}\right)}
\end{gathered}
$$

with

$$
\begin{gathered}
\quad N_{\lambda, \mu}\left(u, q_{1}, q_{2}\right)=\prod_{s \in \lambda}\left(1-u q_{2}^{-a_{\mu}(s)-1} q_{1}^{\ell_{\lambda}(s)}\right) \prod_{s \in \mu}\left(1-u q_{2}^{a_{\lambda}(s)} q_{1}^{-\ell_{\mu}(s)-1}\right) \\
\mathrm{T}_{\lambda}\left(u ; q_{1}, q_{2}\right)=u^{|\lambda|} q_{1}^{\frac{1}{2}\left(\left\|\lambda^{t}\right\|-\left|\lambda^{t}\right|\right)} q_{2}^{\frac{1}{2}(\|\lambda\|-|\lambda|)}=\prod_{(i, j) \in \lambda} u q_{1}^{i-1} q_{2}^{j-1}, \\
\text { and } \vec{\lambda}=\left(\lambda^{(1)}, \ldots, \lambda^{(N)}\right),|\vec{\lambda}|=\sum\left|\lambda^{(i)}\right|,|\lambda|=\sum \lambda_{j},\|\lambda\|=\sum \lambda_{j}^{2} .
\end{gathered}
$$

Application: Painlevé Newton Polygons

with a single internal point and $3 \leq B \leq 9$ boundary points:

Here $\Sigma: f_{\Delta}(\lambda, \mu)=\sum_{(a, b) \in \Delta} \lambda^{a} \mu^{b} f_{a, b}=0$ is torus with $g=1$.

Application: Painlevé quivers

$$
\beta=2 N-N_{f}=4-N_{f}, 0 \leq k \leq 2
$$

Conclusions and outlook

- Dual partition functions of (ε-deformed) $\mathcal{N}=2$ supersymmetric gauge theories satisfy non-autonomous equations of Painlevé type;
- Follow from deautonomization of the SW integrable systems;
- Natural picture for lifted to 5d theories: exploits language of cluster varieties, q-difference equations;
- Extends to regime of strong coupling, where Nekrasov functions are not known (no monopoles in dual Abelian theories);
- Suggests some UV completion of 5d theories ... speculations about 6d.

