Advances in Supersymmetric QFT and Deautonomization of Integrable Systems

Andrei Marshakov

Center for Advanced Studies, Skoltech; Dept Math HSE, ITEP, Lebedev

Advances in QFT

JINR, Dubna, October 2021

Image: A math a math

- $\mathcal{N}=2$ supersymmetric gauge theory *beyond* loop calculus;
- Old story: prepotentials and integrable systems;
- Effective equations for partition function: deautonomization;
- Solutions: instanton interpretation when possible;
- Derivation: lift to 5d;
- Perspectives ...

with M.Bershtein, P.Gavrylenko, M.Semenyakin, A.Stoyan

イロト イポト イヨト イ

4d $\mathcal{N}=2$ supersymmetric Yang-Mills theory:

$$\mathcal{L}_{0} = \frac{1}{g_{0}^{2}} \operatorname{Tr} \left(\mathbf{F}_{\mu\nu}^{2} + |D_{\mu}\Phi|^{2} + [\Phi, \Phi^{\dagger}]^{2} + \operatorname{fermions} \right) + \frac{\vartheta_{0}}{2\pi} \operatorname{Tr} \mathcal{F} \wedge \mathcal{F}$$
(1)

- $\bullet\,$ Higgs condensate $\langle\Phi\rangle$ breaks gauge group to Abelian: Coulomb branch;
- *Moduli space* of the theory: $u \sim \langle Tr \Phi^2 \rangle$, generally

$$P(\lambda; u) = \langle \det(\lambda - \Phi) \rangle \tag{2}$$

Image: A math a math

• Aim: effective $U(1)^{\operatorname{rank} G}$ Abelian theory in IR.

Supersymmetry and loop corrections

- Gauge coupling $\frac{1}{g^2} \sim \beta \log \frac{|u|}{\Lambda^2}$: exact 1-loop RG formula;
- $\beta = 2N N_f \ge 0$... UV completion (?!);

- Complexification: $i\frac{4\pi^2}{g^2} + \frac{\vartheta}{2\pi} = \tau \sim \log \frac{u}{\Lambda^2}$ and $\mathcal{N} = 2$ holomorphy;
- Works at $u \gg \Lambda^2$, naively at u = 0 non-Abelian symmetry restores ...

Image: A math the second se

SW theory: effective action

Obstruction: at $|u| < \Lambda^2$ e.g. one gets $\frac{1}{g^2} \sim \log \frac{|u|}{\Lambda^2} < 0$. Quantum moduli space for G = SU(2)

- non-Abelian symmetry *never* restores: around $a^D = 0$ and $a + a^D = 0$, EM-dual Abelian theory;
- Effective couplings in IR $U(1)^{\operatorname{rank} G}$ theory $\mathcal{L}_{\operatorname{eff}} = \operatorname{Im} T_{ij}(a) F^{i}_{\mu\nu}F^{j}_{\mu\nu} + \dots$
- $\mathcal{N} = 2$ special Kähler geometry : holomorphic prepotential $T_{ij} = \frac{\partial^2 \mathcal{F}}{\partial a_i \partial a_j}$ (action Im $\int d^4 \theta \mathcal{F}(\Phi)$).

A D F A A F F A

At weak coupling:

$$\mathcal{F}(a) \xrightarrow[a \to \infty]{} rac{1}{2} a^2 \log rac{a}{\Lambda} + a^2 \sum_{k>0} f_k \left(rac{\Lambda}{a}
ight)^{4k}$$

• Logarithm from $\mathcal{N} = 2$ one loop;

Expansion over instantons of charge k, in powers of Λ^β = Λ^{2N} = Λ⁴: a way to compute {f_k}.

and at strong coupling (monopole point $a_D \rightarrow 0$)

$$\mathcal{F}_{D}(a_{D}) \xrightarrow[a_{D} \to 0]{} -\frac{1}{2}a_{D}^{2}\log\frac{a_{D}}{\Lambda} - 8\Lambda a_{D} + a_{D}^{2}\sum_{k>0}f_{k}^{D}\left(\frac{a_{D}}{\Lambda}\right)^{k}$$

Different powers: no instantons in monopole theory! No way to compute $\{f_k^D\}$ other, than to solve an equation ...

A.Marshakov

イロト イポト イヨト イ

Step 1: SW theory

SW: determined by Σ of genus=rankG,

Lattice of charges $\Leftrightarrow H_1(\Sigma)$ with symplectic \langle, \rangle , $\langle A_i, B_j \rangle = \delta_{ij}$.

 $\label{eq:period} \mbox{Period matrix: } {\rm Im}\, {\mathcal T}_{ij} \geq 0, \ {\mathcal T} \ \underset{\rm degeneration}{\rightarrow} \ \mbox{log} \ a$

Image: A math a math

 Σ with *pair of differentials* or dS: $\delta dS \simeq$ holomorphic, or by *an integrable system*:

$$a_i = \oint_{A_i} dS, \quad a_i^D = \oint_{B_i} dS = \frac{\partial \mathcal{F}}{\partial a_i}$$
 (3)

consistent by symmetricity of period matrix $\frac{\partial^2 \mathcal{F}}{\partial a_i \partial a_j} = T_{ij}(a)$ (RBI).

Example (pure $\mathcal{N}=2$ gauge theory)

$$\Lambda^{N}\left(w+\frac{1}{w}\right)=P_{N}(\lambda)=\langle \det(\lambda-\Phi)\rangle=\prod_{i=1}^{N}(\lambda-v_{i}) \tag{4}$$

with $\oint d\lambda = 0$, $\oint \frac{dw}{w} = 2\pi i\mathbb{Z}$ so that $dS = \lambda \frac{dw}{w}$.

Does it \mathcal{F} satisfy any reasonable (integrable!?) equation?

A.Marshakov

< □ > < 同 > < 回 > < Ξ > < Ξ

Toda chains

• 'Oversimplified' G = U(1): $\Lambda \left(w + \frac{1}{w}\right) = \lambda - v$ gives $a = \oint \lambda \frac{dw}{w} = v$, $\mathcal{F} = \frac{1}{2}a^2\tau + e^{\tau}$, with $\Lambda^2 = e^{\tau}$, satisfying

$$\frac{\partial^2 \mathcal{F}}{\partial \tau^2} = \exp \frac{\partial^2 \mathcal{F}}{\partial a^2}$$

for the Toda tau-function $\mathcal{F} = \log \mathcal{T}$.

- Generally:
 - Non-autonomous version of 'Toda-like' equations;
 - In ε -deformed theory: instead of naive partition function $\mathcal{T} \stackrel{?}{\sim} Z(a, \tau) \sim e^{\mathcal{F}/\varepsilon^2}$ a Fourier transform $(\mathcal{F}_D = aa_D - \mathcal{F})$

$$\mathcal{T} \underset{\varepsilon \to 0}{\sim} \exp\left(\frac{\mathcal{F}_D}{\varepsilon^2} + O(\varepsilon^2)\right) \cdot \Theta(...)$$

• To derive: lift to 5d (with a compact dimension).

イロト イボト イヨト イヨ

(5)

Outcome:

- Deautonomization: integrable (or isospectral) \Rightarrow isomonodromic system;
- 'SW Toda' (sine-Gordon) \Rightarrow Painlevé III

$$\frac{d^2q}{d\tau^2} + e^{2\tau} \sinh q = 0 \tag{6}$$

• In conventional "isomonodromic" variables $(t \sim \Lambda^4, w \sim \sqrt{t} e^q)$

$$H(w,w';t) = \frac{tw'^2}{4w^2} + \frac{w}{t} + \frac{1}{w} = \partial_t \log \mathcal{T}(t), \tag{7}$$

and

$$w(t)^{-1} = \partial_t t \partial_t \log \mathcal{T}(t) = -t^{1/2} \frac{\mathcal{T}_1(t)^2}{\mathcal{T}(t)^2}$$
(8)

イロト イ団ト イヨト イヨト

The isomonodromic tau functions

$$\mathcal{T}(t;a,\eta) = \sum_{n} e^{4\pi i n \eta} t^{(a+n)^2} \frac{\mathcal{B}(a+n,t)}{G(1+2(a+n))G(1-2(a+n))}$$
(9)

are expressed through partition functions of ε -deformed SU(2) gauge theory.

- $t \sim \Lambda^4$, (a, η) are two yet *independent* integration constants, t^{a^2} classical part ;
- Barnes G-functions $G(a+1) = \Gamma(a)G(a) \underset{a \to \infty}{\sim} \exp\left(\frac{1}{2}a^2 \log a\right);$
- $\mathcal{B}(a,t) = \sum_{\lambda,\mu} t^{|\lambda|+|\mu|} \left(\frac{a+\dots}{a+\dots}\right)$: Nekrasov instanton partition function, $|\lambda| + |\mu| = k$;
- Lagrangian submanifold $(\eta \rightarrow a_D = \partial F / \partial a)$ appears at singularities of solution ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Analytic properties of the Painlevé solutions contain important information about non-perturbative SYM: Already $t \sim \Lambda^4$ gives 4 = 2N pure SU(2) beta-function ...
- Expansion in $t = \Lambda^4$ at $t \to 0$ and in $t^{-1/4} = \Lambda^{-1}$ at $t \to \infty$;
- Non-autonomous Toda equation

$$\partial_t t \partial_t \log \mathcal{T}(t) = -t^{1/2} \frac{\mathcal{T}_1(t)^2}{\mathcal{T}(t)^2}$$
 (10)

< □ > < 同 > < 回 > < Ξ > < Ξ

an analog of $\frac{\partial^2 \mathcal{F}}{\partial \tau^2} = \exp \frac{\partial^2 \mathcal{F}}{\partial a^2}$.

• 'Gravitational flows': the Nakajima-Yoshioka *blow-up equations* from simple analysis.

Blow-up from Painlevé

At singularity of solution

$$\mathcal{T}_{1}(t; a, \eta_{\star}) = 0$$

$$e^{4\pi i \eta_{\star}} = \frac{\Gamma \left(1 + 2a\right)^{2}}{\Gamma \left(1 - 2a\right)^{2}} t^{-2a} \exp\left(\frac{\partial f(a, t)}{\partial a}\right) , \qquad (11)$$

explicitly

$$\sum_{n\in\frac{1}{2}+\mathbb{Z}}\frac{t^{n^2}\frac{\Gamma(1+2a)^{2n}}{\Gamma(1-2a)^{2n}}}{G(1+2(a+n))G(1-2(a+n))}\exp\left(n\frac{\partial f(a,t)}{\partial a}\right)\mathcal{B}(a+n,t)=0 \quad (12)$$

which has the form

$$\sum (\ldots) Z(\ldots; \epsilon_1 - \epsilon_2) Z(\ldots; \epsilon_1 + \epsilon_2) = 0$$
(13)

・ロト ・日 ・ ・ ヨト ・

at both $\epsilon_1 + \epsilon_2 = 0$ and $\epsilon_1 \rightarrow 0$. Extends to strong coupling ...

Step 2: derivation from 5d

Lift SW theory to 5d: $\mathbb{R}^4\times\mathbb{S}^1$

$$\lambda + \frac{1}{\lambda} + \mu + \frac{z}{\mu} = u \tag{14}$$

at z
ightarrow 0 for $u=2\cosh a, \ \lambda=2\cosh \zeta$

$$\mu = 4\sinh\frac{\zeta - a}{2}\sinh\frac{\zeta + a}{2} \tag{15}$$

The period "matrix" (= complexified coupling $\tau \sim \frac{\vartheta}{2\pi} + i \frac{4\pi^2}{g_{\rm YM}^2}$)

$$au \sim \int_{-a}^{a} d\log\sinhrac{\zeta-a}{2} \sim \log\sinh a$$
 (16)

collects contributions from 5d KK modes.

5d Nekrasov functions from quantum mechanics on instanton moduli space!

< □ > < □ > < □ > < □ > < □ >

IS on cluster varieties

- 'Relativization' of Toda, 'trigonometric' dependence;
- Integrable systems in Lie groups: cluster varieties;
- Quiver ${\mathcal Q}$ with $|{\mathcal Q}|$ vertices, oriented edges \Rightarrow logarithmically constant bracket

$$\{x_i, x_j\} = \epsilon_{ij} x_i x_j, \quad i, j = 1, \dots, |\mathcal{Q}|$$
(17)

(no sum!) with skew-symmetric

$$\epsilon_{ij} = \# \operatorname{arrows} (i \to j) = -\epsilon_{ji}$$
 (18)

• Discrete flows from cluster mutations:

$$\mu_j: \epsilon_{ik} \mapsto -\epsilon_{ik}, \text{ if } i = j \text{ or } k = j, \quad \epsilon_{ik} \mapsto \epsilon_{ik} + \frac{\epsilon_{ij}|\epsilon_{jk}| + \epsilon_{jk}|\epsilon_{ij}|}{2} \text{ otherwise},$$

the x-variables (Poisson map)

$$\mu_j: \quad x_j \to \frac{1}{x_j}, \qquad x_i \to x_i \left(1 + x_j^{\operatorname{sgn}(\epsilon_{ij})}\right)^{\epsilon_{ij}}, i \neq j$$
(19)

• • • • • • • • • •

• Defined by a convex Newton Polygon $\Delta :$ a curve $\Sigma \subset \mathbb{C}^{\times} \times \mathbb{C}^{\times}$

$$f_{\Delta}(\lambda,\mu) = \sum_{(a,b)\in\Delta} \lambda^a \mu^b f_{a,b} = 0.$$
⁽²⁰⁾

endowed with $d\lambda/\lambda \wedge d\mu/\mu$, modulo $SL(2,\mathbb{Z})$.

• Realized on a cluster variety with Poisson structure

$$\{x_i, x_j\} = \epsilon_{ij} x_i x_j, \quad \{x_i\} \in \left(\mathbb{C}^{\times}\right)^{2\operatorname{Area}(\Delta)}.$$
(21)

determined by \mathcal{Q} , with $\epsilon_{ij} = \#\operatorname{arrows}(i \to j)$.

• Integrability: Pick's formula

$$\dim \mathcal{X} = 2\operatorname{Area}(\Delta) - 1 = (B - 3) + 2g \tag{22}$$

< □ > < 同 > < 回 > < Ξ > < Ξ

Deautonomization: SU(2) Toda quiver

• Poisson quiver Q:

defines the bracket

$$\{x_i, x_{i+1}\} = 2x_i x_{i+1}, \quad i = 1, \dots, 4$$
(23)

- $q = x_1 x_2 x_3 x_4$ and $z = x_1 x_3$ are in the center of Poisson algebra;
- Integrable system (relativistic Toda) on Poisson submanifold in affine group at q = 1 (!);
- straightforward quantization $\hat{x}_i \hat{x}_j = p^{-2\epsilon_{ij}} \hat{x}_j \hat{x}_i$ (q and $p two \varepsilon$ -parameters).

< □ > < 同 > < 回 > < Ξ > < Ξ

Abelian subgroup of the quiver MCG:

メロト メタト メヨト メヨト

Abelian subgroup of the quiver MCG:

イロト イヨト イヨト イヨト

Abelian subgroup of the quiver MCG:

イロト イヨト イヨト イヨト

Abelian subgroup of the quiver MCG:

イロト イヨト イヨト イヨト

Abelian subgroup of the quiver MCG:

イロト イ団ト イヨト イヨト

For q = 1 the flow

$$T: (x_1, x_2, x_3, x_4) \mapsto \left(x_2 \left(\frac{1+x_3}{1+x_1^{-1}}\right)^2, x_1^{-1}, x_4 \left(\frac{1+x_1}{1+x_3^{-1}}\right)^2, x_3^{-1}\right)$$

or

$$T: (x_1, x_2, \mathbf{z}, \mathbf{q}) \mapsto \left(x_2 \left(\frac{x_1 + \mathbf{z}}{x_1 + 1} \right)^2, x_1^{-1}, \mathbf{q}\mathbf{z}, \mathbf{q} \right) = \left(x_2 \left(\frac{x_1 + \mathbf{z}}{x_1 + 1} \right)^2, x_1^{-1}, \mathbf{z}, \mathbf{q} \right)$$

preserves the Hamiltonian $\mathcal{H}=\sqrt{x_1x_2}+\frac{1}{\sqrt{x_1x_2}}+\sqrt{\frac{x_1}{x_2}}+z\sqrt{\frac{x_2}{x_1}}.$

メロト メタト メヨト メヨト

Deautonomization: Painlevé

Let $x_1 x_2 x_3 x_4 = q \neq 1$

$$T: (x_1, x_2, \mathbf{z}, \mathbf{q}) \mapsto \left(x_2 \left(\frac{x_1 + \mathbf{z}}{x_1 + 1}\right)^2, x_1^{-1}, \mathbf{qz}, \mathbf{q}\right)$$

Consider z as "time" $T: x(z) \mapsto x(qz)$, then $x_1 = x(z)$, $x_2 = x^{-1}(q^{-1}z)$, satisfy

$$x(qz)x(q^{-1}z) = \left(\frac{x(z)+z}{x(z)+1}\right)^2$$

or q-Painlevé III₃ equation.

< □ > < 同 > < 回 > < Ξ > < Ξ

Deautonomization: tau-functions

For the tau-functions $x(z) = z^{1/2} \frac{T_1(z)^2}{T_0(z)^2}$ one gets bilinear (non-autonomous!) Hirota equations

$$\mathcal{T}_0(qz)\mathcal{T}_0(q^{-1}z) = \mathcal{T}_0(z)^2 + z^{1/2}\mathcal{T}_1(z)^2$$

 $\mathcal{T}_1(qz)\mathcal{T}_1(q^{-1}z) = \mathcal{T}_1(z)^2 + z^{1/2}\mathcal{T}_0(z)^2$

Generally for the $SU(N)_k$ -Toda:

$$\mathcal{T}_{j}\left(qz
ight)\mathcal{T}_{j}\left(q^{-1}z
ight) = \mathcal{T}_{j}(z)^{2} + z^{1/N}\mathcal{T}_{j+1}\left(q^{k/N}z
ight)\mathcal{T}_{j-1}\left(q^{-k/N}z
ight)$$
 $j \in \mathbb{Z}/N\mathbb{Z}$

Origin: mutation of tau-variables (dual to x-variables) ...

・ロト ・ 日 ・ ・ ヨ ト ・

Deautonomization: solutions

Autonomous case: solution of Hirota relations in theta functions (Fay identities)

Deautonomization $q \neq 1$:

$$\mathcal{T}_{j}^{N,k}(\vec{u},\vec{s};q|z) = \sum_{\vec{\Lambda}\in Q_{N-1}+\omega_{j}} s^{\Lambda} \mathcal{Z}_{N,k}(\vec{u}q^{\vec{\Lambda}};q^{-1},q|z)$$
(24)

with $\mathcal{Z}_{N,k} = \mathcal{Z}_{\mathrm{cl}}^{N,k} \cdot \mathcal{Z}_{\mathrm{1loop}}^{N} \cdot \mathcal{Z}_{\mathrm{inst}}^{N,k}$ being 5d Nekrasov functions.

メロト メタトメミト メミト 二日

Deautonomization: 5d SYM

Here:

$$\begin{aligned} \mathcal{Z}_{cl}^{N,k} &= \exp\left(\log z \frac{\sum (\log u_i)^2}{-2\log q_1 \log q_2} + k \frac{\sum (\log u_i)^3}{-6\log q_1 \log q_2}\right) \\ \mathcal{Z}_{1loop}^{N} &= \prod_{1 \le i \ne j \le N} (u_i/u_j; q_1, q_2)_{\infty}, \quad \mathcal{Z}_{inst}^{N,k} = \sum_{\vec{\lambda}} \frac{z^{|\vec{\lambda}|} \prod_{i=1}^N \mathsf{T}_{\lambda^{(i)}}(u; q_1, q_2)^k}{\prod_{i,j=1}^N \mathsf{N}_{\lambda^{(i)},\lambda^{(j)}}(u_i/u_j; q_1, q_2)} \end{aligned}$$

with

$$\begin{split} \mathsf{N}_{\lambda,\mu}(u,q_1,q_2) &= \prod_{s\in\lambda} (1 - uq_2^{-a_{\mu}(s)-1}q_1^{\ell_{\lambda}(s)}) \prod_{s\in\mu} (1 - uq_2^{a_{\lambda}(s)}q_1^{-\ell_{\mu}(s)-1}) \\ & \mathsf{T}_{\lambda}(u;q_1,q_2) = u^{|\lambda|} q_1^{\frac{1}{2}(||\lambda^t|| - |\lambda^t|)} q_2^{\frac{1}{2}(||\lambda|| - |\lambda|)} = \prod_{(i,j)\in\lambda} uq_1^{i-1}q_2^{j-1}, \\ & \vec{\mathsf{T}}_{\lambda}(u;q_1,q_2) = u^{|\lambda|} q_1^{\frac{1}{2}(||\lambda^t|| - |\lambda^t|)} q_2^{\frac{1}{2}(||\lambda|| - |\lambda|)} = \prod_{(i,j)\in\lambda} uq_1^{i-1}q_2^{j-1}, \end{split}$$

and $\vec{\lambda} = (\lambda^{(1)}, \dots, \lambda^{(N)}), |\vec{\lambda}| = \sum |\lambda^{(i)}|, |\lambda| = \sum \lambda_j, ||\lambda|| = \sum \lambda_j^2$.

・ロト ・回ト ・ヨト ・ヨト

Application: Painlevé Newton Polygons

with a single internal point and $3 \le B \le 9$ boundary points:

Here Σ : $f_{\Delta}(\lambda, \mu) = \sum_{(a,b) \in \Delta} \lambda^a \mu^b f_{a,b} = 0$ is torus with g = 1.

• • • • • • • • • •

Application: Painlevé quivers

 $\beta = 2N - N_f = 4 - N_f, \ 0 < k < 2$

・ロト ・日 ・ ・ ヨト ・

Conclusions and outlook

- Dual partition functions of (ε -deformed) $\mathcal{N} = 2$ supersymmetric gauge theories satisfy non-autonomous equations of Painlevé type;
- Follow from deautonomization of the SW integrable systems;
- Natural picture for lifted to 5d theories: exploits language of cluster varieties, *q*-difference equations;
- Extends to regime of strong coupling, where Nekrasov functions are not known (no monopoles in dual Abelian theories);
- Suggests some UV completion of 5d theories ... speculations about 6d.

(日)