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What are Adler function, Bjorken Sum Rule, the Crewther relation
There are renorm-group invariant single scale Q? quantities D, CEP:

Adler function

drD(as) = Da = —1272Q? - TI(Q?); Q% =

sz

Bjorken polarized Sum Rule
Co(as)+high twist = SP(Q?) =[5 a7 (x, Q%) —a1" (x, Q%) |dx

lgA

Crewther relation
—a plausible conjecture [Crewther 1972,1997] inspired by conformal symmetry

Qs

D(as)ns - C¥(as) = 1+ B(as)K (as), where K (as) — polynom in as = e
s

[D.Broadhurst,A.Kataev,PLB1993] -Crucial 3-loop analysis in MS-scheme

[P.Baikov,K.Chetyrkin,J.Kiihn, PRL2010] - confirmation in O(a$).



OUTLINE

1. Intro: What is the {}-expansion for RG-invariants
and what does it express?

2. How to apply the {5 }-expansion ?
To understand and to control the corresponding PT series in each
expansion order, etc.

3. How to obtain the {}-expansion from RQCD
(QCD with different fermion Representations of gauge group),
results for Adler Dns(as) and Bjorken CPP(as).

4. Crewther-Broadhurst-Kataev relation  and its corollaries
from {(}-expansion point of view.

5. Conclusions

STORE



Motivation for the revision of series representation

we consider 1-scale  Q? | RG-INVARIANT | quantities at Q? = pu3, €.g., Dns

"Wild " approach: Vd, - numbers, Delicate approach: vd, has an
taken wholly intrinsic structure due to as-renorm.
D(as)~1+ asdy + a2d + adds + ... D(as)~1+M(as, {8 }) + 2D matrix

rrrrr

d; = 31.77-1.84ny; d; = Bodz[1] + d2[0];

ds = 1164.8—270.1n;—5.5n%; ds = [5da[2]+8:d3[0, 1] +80ds[1]+d3[0]

ds = 34765-8806.4n+481.3n2 ds = (3504[3]+320s[0,0,1]+...
—2.56n3. — series becomes "thick"

the decomposition is named {3 }-expansion [MS2005-7]
it shows the dynamic knowledge of D exhibited as as-renorm.



How to apply the {3}-expansion ? 1.(If we already have it)
Different pieces are appropriate for miscellaneous and can be cooked differently

KoMeNganUn
o MpUroTOBNERWIO:

(a) ;‘ =

Evident usage of the {3}-expansion is the different kinds of optimization :
one can change the contributions of different origins of as-renorm playing
with the choice of p3. E.g., well-known BLM approach [Brodsky et al 1983]

d> = [odz[1] 4 d2[0] — d[0] at Hé—> NSLM = eXP(—dz[l]/dl)Hé
,30 = 11/3CA — 4/3TRnf pl’Oﬁt at ,Bodz[l] > dz[O]
ds = B5ds[2]+31d3[0, 1]+B0ds[1] +d3[0] — d3[0]

dn = B) 'da[n — 1]+ ... +dn[0] — dn[0]

generalized BLM: D =1+ .} al(p&)dn — Do = 1+ 320 a2 (s )dn[0]
But this “conformal limit” may be not an optimized series in any sense, for
R(s) it makes the PT convergence worse in O(a2) [A. Kataev&MS PRD2015]



How to apply the {3}-expansion 2.(If we already have it)

[MS2007, A.Kataev&MS PRD2015] (as, u?) — (&, u'?)

In(p? /%)=t —t' = A(a’):A0+a/60A1+(a/60)2A2+...,
TBLM
a®-d, — a?-[d; = B0 (d2[1]—A0) + dz[0]];
a® dy — a®- [dgz 35( d[2] — 20z 1] Ao+ AF— A1 ) + B (ds[0, 1] - o)
130 (ds[1] - 20:[0] ) + 0]
at dy — a*. [d£ = B3(da[3] —3d3[2]A0...—A2)+...]
Fitting components Ao, A1, Ao, ... of the normalization scale 1'? to adjust
the elements d4,d3,d,, . . . following to any optimization procedure

The practice impact of the {3}-expansion reveals at 3o > 1,
different cases of optimization in O(a§) [A.Kataev&MS2015] .

An optimization as numerical minimum  of all QCD corr. to C®P(as),
asC1 + a2c, 4 alcs + adcy, up to O(ad) was realized in [D.Kotlorz&MS2019] .
The effect is about —20% at p? ~ 3GeV2.



How to obtain the {3 }-expansion ? 1. RQCD

We need in QCD with additional degrees of freedom - d.o.f. ,e.g., fermion multiplets
These d.o.f. {R} interact following the universal gauge principle entering
only in intrinsic loops [K.Chetyrkin PLB1997 , D with MSSM gluinos ng].

CA general

TrNs, Tng,.. — {R} [M.Zoller 2016] for B(as,{R}),

D(as, {R}) or C®(as,{R}) : RQCD [P.AB.&K.G.Ch.&S.V.M]

d.o.f.:
{R}- any numbers of different quark representations [K.Chetyrkin&M.Zoller 2017]
Nrep N r | PN
Looo = ...+ Z Z {qu,r 0 Yqr — Mq,rthg.rthar + gswq,rAaTa’rwq,r} )
r=1qgq=1
= (q — flavors, r — Representation)
Lie Algebra: [Ta,r7Tb,r] — jfaberer. T_a,r-l-q,r = §iCr.r; TF,r(sab —Tr (Ta,r-l—b,r) ;
dalaz an _ Z Tr {Ta )yRT an(2 TR n),R} ’

perm ™



Technicalities, references 1'. QCD — RQCD

In the standard QCD D(as, R) and C®P (as, R) at O(a)
computed in [P. Baikov, K. Chetyrkin, J. Kiilhn, 2010]  with the help of

1. reduction of FI's with 1/D expansion [P.Baikov 2000. . .]
2. FORM [J.Vermaseren 1990 ...]

3. FORM package COLOR for color structures
[T. van Ritbergen, A.Schellekens, J. Vermaseren 1999 .. .]

Adding more fermions multiplets, R — {R},

items 1./2. in the same way as in [ 2010]

item 3. extension of the package COLOR on multi-fermion-generation case
[M. Zoller 2016]



How to obtain the {/5}-expansion ? 2.

Then one can decompose all 3-terms explicitly following an algebraic procedure
[MS2017]: all 7 elements of d4 and ¢, were obtained,

ds = B5da[3]+/32d4[0, 0, 1]+ 31 Boda[1, 1]+ B5da[2] + B1d4[0, 1]+ Boda[1]+d4[0]
dn = B0 daln — 1]+ ... +80n[1] + dn[O]

N(n) ooalt al
dn[O]
R N J Bodn[1]
M(as, {5}) = :
(n—1) \/a
N(n)= Z p(h={1,2,4,7,12,...} ~ ——-(p(n) + partition of numbers)+. ..
™
1=0
Hardy-Ramanujan asymptotic for partition of numbers p(n) ~ 4—{/5 exp (m/Zn/S)
n

Important! We need new d.o.f. Only to perform the decomposition,
after that we return from RQCD to the standard QCD, {R} — Tgrns.
The marked traces of the general gauge principle saved as {/3}-expansion .



How to obtain the {/5}-expansion ? 3. Solving a set of equations

The key role plays the set of zeros of Bo({R}), B1({R}), B2({R}), ...
and zeros of sets of these .
E.g., in O(a?) Bo, B1, 3> are defined on the axes of variables Ry, R1, R,:

1) 3 3D point Ro,1,2 : Bo({Ro,1,2}) = B1({Ro,1,2}) = B2({Ro,1,2}) =0,
Then D(Ro,1,2) = (a2d,[0],adds3[0], ad d,4[0],...)
step by step

2) 3linein 3D Bo({Ro1}) = B1({Ro1}) =0,
Then d4(Ro,1) = B2({Ro,1})d4[0, 0, 1] + d4[0]

3) 3 curve (line) in 3D Bo({Ro,2}) = B2({Ro,2}) = 0,
Then d4(F—20,2) = 51({§0,2})d4[ov 1] + d4[0]

Finally this reduces to the set of equations at non-zero determinant.
In O(al) at 6-loop we also have single-valued solution of the similar set
of equation [MS2017].



Crewther-Broadhurst-Kataev relation  and its corollaries 1.

The elements of {3}-expansion provide the appropriate “bricks” to
analyse C-B-K relation , which is our main subject here.
First time it was applied to C-B-K [A.Kataev&MS TMP2012]

Dis(as) - C™P(as) = 1+ B(as) x > _ag Ky

n=1

Ki = Ki[1], K2 = Ko[1] + BoK2[2], Kz = Ka[1] + BoKa[2] + B5Ka[3] + B1Ka[L, 1]

1. The Dg - ngp =1 -"conformal” part of the relation, here d, — dn[0] € Dy,

d 1 0 0
d, d 1 0
ck [0] + d [0] = (=) detD{)] = (—)* d3 d2  d 8 ,
dk,1 dl 1
0 de 1 dko ... do

¢k [0] + dk [0] = Polynom(dk_1), k = 2,3,4 — Confirmations!
cs5[0] + ds[0] = Polynom(ds), k =5 — Prediction



Crewther-Broadhurst-Kataev relation  and its corollaries 2.
2. The factorization of the 3(as), taken wholly, sets the chain of conditions
Bo B1 B2
+ 4 + .
dz[l] + Cz[l] = d3[0, 1] + C3[0, 1] :C4[0, 0, 1] + d4[0, 0, 1]:3(:;:(5 — 4C3)
dn[0,0,...,1] +¢4[0,0,...,1] Confirmations /Prediction
N —— N —

K1[1]

n—1 n—1

Cs[1] + ds[1] + da1(c2[1] — d2[1]) =
C€4[0, 1] 4 d4[O0, 1] 4 d1(c5[0, 1] — d3[0, 1]) Confirmation

% —136(; + 240C5> + CrCa (ﬂ — 16(3

ci —
3
— ¢5[0,0, 1] + ds[0, 0, 1] + di ([0, 0, 1] — da[0, 0, 1]) Prediction
= [0, 1] + [0, ..., 1] + di(Cos[0 - ., 1] — dn_1[O, .., 1]).
n—2 n—2 n—2 n—2
K3[1] = C4[1] + d4[1] + dl(Cg[l] — dg[l]) + dz[O]Cz[l] + dz[l]Cz[O] Prediction
= 5[0, 1] + ds[0, 1] + d (ca[0, 1] — da[0, 1]) + d2[O]cs[0, 1] + c2[0]da[0, 1] =. ..

Kz[1]

= cnaa]0,.. ., 1] + dusa[0, .. ., 1] +d1(cn[0,...,1] - dn[O,...,l]) +
N—— N—— N—— N——
n—-2 n—2 n—2 n—2
dz[O] cn,l[O, ey 1] + Cz[O] dn,l[O, ey 1]
N—— N——

n—2 n—2



Crewther-Broadhurst-Kataev relation,  the structure of K —term

The universal form of the second term appears due to the cancellation of al- terms

n—2

Knz3[l] = Cnya[]4dnta[1]+d1(cn[1] — da[1]) +Z(dk[olcn+lfk[1]+ck [0]dn11«[1]) -
k=2

Partial results for K-term in order O(a?)

K]_[l] = dz[l] + Cz[l] = 3CF<; — 4<3>
Ko[1] = ca[1] + ds[1] + d1 (C2[1] — d2[1])
= C2 ( - 3%7 —136(; + 240<5> + CeCa (‘;—7 - 16(3>
K2[2] = C3[2] + d3[2] = 3C¢ (% — ?C:g)
Kg[l] = C4[1] + d4[1] +d; (C3[1] — dg[l]) + dz[O]Cz[l] + dz[l]Cz[O]
Ks[2] = ca[2] +da[2] + d1 (c3[2] — ds[2]) + d2[1]cz[1],

Ka[3] = caf3] +da[3],
Kg[l, 1]2 C4[1, 1] + d4[1, 1]



CONCLUSIONS

1. The {B}-expansion for PT series is invented and analyzed for the
Renormalization Group invariant  quantities.
This allows to perform different optimizations of the PT series.

2. The elements of {3}-expansion can be determined within RQCD
following to an algebraic procedure.

3. The Crewther-Broadhurst-Kataev relation  is reproduced in order
O(a?). The interesting relations between the elements of Adler Dns, and
Bjorken polarized SR C®P are established in any orders of as.



dq

ds[2]

d[1]
da[3]
da[1,1]

da[2]

d4[o7 07 l]

da[1]

d4[07 1]

STORE, explicit form of D-elements. 1

11 C C
= 3ce 1) = s (5 40 ) s ol = e (2 - 5
302 101
=d (7 - *Cs) ; d3[0,1] =dy (E - 8(3)
3 40
_— (CA (‘Z + 26— ?Cs) C(18452¢; — 80<5))

6131
= Cr (4754—-40643-18045

1940
= Cg(385-—

6733
:_q@FC§f+mmg—mwg)+

(20929 12151
A —— —

434-144<§—r22045);

@+WK?4%%Q}

144 6
= Cp (§g§ +-136<3-24o<5)

447
:c%-@CT—Qg4%%+wmﬂ+

16373 17513
Al - <34-2592<34—303045-42047)}

139 1054 251
=—Cg |:CA ( 2T 3 G — 460(5) +Cr (T+144C3—24045)} )




STORE, explicit form of Dg, Cq elements. 2

ds[0] = dl((523 7243) +—CAC —gcz) .

) 36 3 2
ds[0] = d4[0] +6dy4

4157 2409 3105

= Cc} (T + 964“3) —CaC2 (T +432<3) +C3c2 (T + 648(3) +
68047 8113
Cf\cF (4—% + —43 - 711045) +8dy,
6y = — 0= (dabcd A2 (13 + 16Cs — 40Gs) + A2 (=3 + 4¢3 + 20Gs))

523 ) cz
C3[O] = C E —72¢3 |C4 + CFCA + — >
C4[0] = E4[0] — dd,4

= -C} (% + 96(3) + CaC2 (% +432¢3) —C3c2 (? + 194443) -
68047 8113
C/§CF (% + TCS - 7110C5) —ddy;



