Matrix and tensor models: recent progress

Andrei Mironov

P.N.Lebedev Physics Institute; ITEP; IITP

Basic properties of matrix models

Gaussian Hermitian matrix model:

the integral over Hermitian $N \times N$ matrix H

$$
Z_{N}\left(p_{k}\right)=\frac{\int d H \exp \left(-\frac{\mu^{2}}{2} \operatorname{Tr} H^{2}+\sum_{k} \frac{p_{k} \operatorname{Tr} H^{k}}{k}\right)}{\int d H \exp \left(-\frac{\mu^{2}}{2} \operatorname{Tr} H^{2}\right)}
$$

with the Haar measure $d H, Z_{N}\left(p_{k}\right)$ is understood as a formal power series in p_{k}.

Integrable property:

$Z_{N}\left(p_{k}\right)$ is a τ-function of the Toda chain hierarchy, satisfies an infinite set of integrable equations, the first one being

$$
Z_{N}\left(p_{k}\right) \frac{\partial^{2} Z_{N}\left(p_{k}\right)}{\partial p_{1}^{2}}-\left(\frac{\partial Z_{N}\left(p_{k}\right)}{\partial p_{1}}\right)^{2}=Z_{N+1}\left(p_{k}\right) Z_{N-1}\left(p_{k}\right)
$$

or

$$
\frac{\partial^{2} \phi_{N}}{\partial p_{1}^{2}}=\exp \left(\phi_{N+1}-\phi_{N}\right)-\exp \left(\phi_{N}-\phi_{N-1}\right)
$$

The integrable times are $t_{k}=p_{k} / k$.

Ward identities:

vanishing integrals of total derivatives

$$
\int d H \operatorname{Tr} \frac{\partial}{\partial H}\left[\operatorname{Tr} H^{n+1} \exp \left(-\frac{\mu^{2}}{2} \operatorname{Tr} H^{2}+\sum_{k} \frac{p_{k} \operatorname{Tr} H^{k}}{k}\right)\right]=0
$$

at $n \geq-1$ gives rise to the infinite set of conditions:

$$
\begin{array}{r}
L_{n} Z_{N}\left(p_{k}\right)=0, \quad n \geq-1 \\
L_{n}=\sum_{k}(k+n) p_{k} \frac{\partial}{\partial p_{k+n}}+\sum_{a=1}^{n-1} a(n-a) \frac{\partial^{2}}{\partial p_{a} \partial p_{n-a}}+ \\
+2 N n \frac{\partial}{\partial p_{n}}+N^{2} \delta_{n, 0}+N p_{1} \delta_{n+1,0}-\mu^{2}(n+2) \frac{\partial}{\partial p_{n+2}}
\end{array}
$$

These are so called Virasoro constraints since

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}
$$

Solutions of the Virasoro constraints

There are many solutions to the Toda chain equations, but the solution of the infinite set of Virasoro constraints is unique:

$$
Z_{N}\left(p_{k}\right)=1+\frac{1}{\mu} \alpha_{[1]} p_{1}+\frac{1}{\mu^{2}}\left(\alpha_{[1,1]} p_{1}^{2}+\alpha_{[2]} p_{2}\right)+\ldots
$$

where the coefficients α 's are determined recursively.
Non-Gaussian potentials give rise to ambiguous integrals (dependence on the integration contour choice).
Convenient basis: the Schur polynomials, characters of representations of the $G L(N)$ group

Solutions of the Virasoro constraints

There are many solutions to the Toda chain equations, but the solution of the infinite set of Virasoro constraints is unique:

$$
Z_{N}\left(p_{k}\right)=1+\frac{1}{\mu} \alpha_{[1]} p_{1}+\frac{1}{\mu^{2}}\left(\alpha_{[1,1]} p_{1}^{2}+\alpha_{[2]} p_{2}\right)+\ldots
$$

where the coefficients α 's are determined recursively.
Non-Gaussian potentials give rise to ambiguous integrals (dependence on the integration contour choice).
Convenient basis: the Schur polynomials, characters of representations of the $G L(N)$ group:

$$
Z_{N}\left(p_{k}\right)=1+\frac{1}{\mu} c_{[1]} p_{1}+\frac{1}{\mu^{2}}\left(c_{[1,1]} \frac{\left(p_{1}^{2}-p_{2}\right)}{2}+c_{[2]} \frac{\left(p_{1}^{2}+p_{2}\right)}{2}\right)+\ldots=\sum_{R} \frac{1}{\mu^{\mid R]}} c_{R} \chi_{R}\left\{p_{k}\right\}
$$

$\chi_{R}\left\{p_{k}\right\}$ is the Schur function, R is the Young diagram.

Schur functions

The definition of the Schur functions:

$$
\chi_{R}=\operatorname{det}_{i, j} h_{R_{i}-i+j} \quad \exp \left(\sum_{k} \frac{p_{k} z^{k}}{k}\right)=\sum_{n} h_{n} z^{n}
$$

The Schur function as a character:
$\chi_{R}\left\{p_{k}\right\}$ is a symmetric function of $x_{i}, p_{k}=\sum x_{i}^{k}$, and x_{i} are the eigenvalues of the group element g in representations R. In other words,

Schur functions

The definition of the Schur functions:

$$
\chi_{R}=\operatorname{det}_{i, j} h_{R_{i}-i+j} \quad \exp \left(\sum_{k} \frac{p_{k} z^{k}}{k}\right)=\sum_{n} h_{n} z^{n}
$$

The Schur function as a character:

$\chi_{R}\left\{p_{k}\right\}$ is a symmetric function of $x_{i}, p_{k}=\sum x_{i}^{k}$, and x_{i} are the eigenvalues of the group element g in representations R. In other words,

$$
\operatorname{Tr}_{R} g=\chi_{R}\left\{p_{k}=\operatorname{Tr}_{f} g^{k}\right\}
$$

Examples:

$$
\chi_{[1]}\left\{p_{k}\right\}=p_{1}=\sum_{i} x_{i}, \quad \chi_{[1,1]}\left\{p_{k}\right\}=\operatorname{Tr}_{[1,1]} g=\frac{\left(\operatorname{Tr}_{f} g\right)^{2}-\operatorname{Tr}_{f} g^{2}}{2}=\frac{p_{1}^{2}-p_{2}}{2}=\sum_{i<j} x_{i} x_{j}
$$

Character property of matrix models

Cauchy formula:

$$
\exp \left(\sum_{k} \frac{p_{k} \operatorname{Tr} H^{k}}{k}\right)=\sum_{R} \chi_{R}\left\{\operatorname{Tr} H^{k}\right\} \chi_{R}\left\{p_{k}\right\}
$$

This means that

$$
Z_{N}\left(p_{k}\right)=\frac{\int d H \exp \left(-\frac{\mu^{2}}{2} \operatorname{Tr} H^{2}+\sum_{k} \frac{p_{k} \operatorname{Tr} H^{k}}{k}\right)}{\int d H \exp \left(-\frac{\mu^{2}}{2} \operatorname{Tr} H^{2}\right)}=\sum_{R}\left\langle\chi_{R}\left\{\operatorname{Tr} H^{k}\right\}\right\rangle \chi_{R}\left\{p_{k}\right\}
$$

Character property of matrix models

Cauchy formula:

$$
\exp \left(\sum_{k} \frac{p_{k} \operatorname{Tr} H^{k}}{k}\right)=\sum_{R} \chi_{R}\left\{\operatorname{Tr} H^{k}\right\} \chi_{R}\left\{p_{k}\right\}
$$

This means that

$$
Z_{N}\left(p_{k}\right)=\frac{\int d H \exp \left(-\frac{\mu^{2}}{2} \operatorname{Tr} H^{2}+\sum_{k} \frac{p_{k} \operatorname{Tr} H^{k}}{k}\right)}{\int d H \exp \left(-\frac{\mu^{2}}{2} \operatorname{Tr} H^{2}\right)}=\sum_{R}\left\langle\chi_{R}\left\{\operatorname{Tr} H^{k}\right\}\right\rangle \chi_{R}\left\{p_{k}\right\}
$$

The main property:

$$
\frac{1}{\mu^{|R|}} c_{R}=\left\langle\chi_{R}\left\{\operatorname{Tr} H^{k}\right\}\right\rangle=\frac{\chi_{R}\{N\} \cdot \chi_{R}\left\{\delta_{k, 2}\right\}}{\chi_{R}\left\{\delta_{k, 1}\right\}}
$$

Universality of the character property

Chern-Simons theory (unitary matrix model).
The Wilson average of a simple closed contour is equal to
$\left\langle\chi_{R}\left(e^{m_{i}}\right)\right\rangle:=\int \chi_{R}\left(e^{m_{i}}\right) \prod_{i<j}^{N} \sinh ^{2}\left(\frac{m_{i}-m_{j}}{2}\right) \prod_{i=1}^{N} \exp \left(-\frac{m_{i}^{2}}{2 g^{2}}\right) d m_{i}=q^{N|R|} \cdot q^{2 C_{2}(R)} \cdot \chi_{R}\left\{p^{*}\right\}$
$q=e^{g^{2} / 2}, C_{2}(R)$ is the eigenvalue of the 2 nd Casimir operator, $p_{k}^{*}=\frac{q^{N k}-q^{-N k}}{q^{k}-q^{-k}}$ is q-deformed $p_{k}=N$.

Universality of the character property

Chern-Simons theory (unitary matrix model).

The Wilson average of a simple closed contour is equal to

$$
\left\langle\chi_{R}\left(e^{m_{i}}\right)\right\rangle:=\int \chi_{R}\left(e^{m_{i}}\right) \prod_{i<j}^{N} \sinh ^{2}\left(\frac{m_{i}-m_{j}}{2}\right) \prod_{i=1}^{N} \exp \left(-\frac{m_{i}^{2}}{2 g^{2}}\right) d m_{i}=q^{N|R|} \cdot q^{2 C_{2}(R)} \cdot \chi_{R}\left\{p^{*}\right\}
$$

$q=e^{g^{2} / 2}, C_{2}(R)$ is the eigenvalue of the 2 nd Casimir operator, $p_{k}^{*}=\frac{q^{N k}-q^{-N k}}{q^{k}-q^{-k}}$ is q-deformed $p_{k}=N$.

Kontsevich model:

$$
\left\langle Q_{R}\left\{\operatorname{Tr} X^{k}\right\}\right\rangle=\frac{\int d X Q_{R}\left\{\operatorname{Tr} X^{k}\right\} \exp \left(-\operatorname{Tr} X^{2} \Lambda\right)}{\int d X \exp \left(-\operatorname{Tr} X^{2} \Lambda\right)}=\left\{\begin{array}{cc}
\frac{Q_{R / 2}\left\{\operatorname{Tr} \Lambda^{-k}\right\} Q_{R / 2}\left\{\delta_{k, 1}\right\}}{Q_{R}\left\{\delta_{k, 1}\right\}} & \text { if } R \mid 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Tensor models

The rectangular complex matrix model:

$$
\left\langle\chi_{R}\left\{\operatorname{Tr}(M \bar{M})^{k}\right\}\right\rangle=\int_{N_{1} \times N_{2}} \chi_{R}\left\{\operatorname{Tr}(M \bar{M})^{k}\right\} e^{-\operatorname{Tr} M \bar{M}} d^{2} M=\frac{\chi_{R}\left\{N_{1}\right\} \chi_{R}\left\{N_{2}\right\}}{\chi_{R}\left\{\delta_{k, 1}\right\}}
$$

Universality of the tensor model.

Consider the integral over tensor $M_{\text {al }}$. Then

Here $\chi_{R_{1}, \ldots, R_{r}}$ is the generalized character, and $C_{R_{1}, \ldots, R_{r}}$ is the Clebsh-Gordan coefficient for the

representations of the symmetric group.

Tensor models

The rectangular complex matrix model:

$$
\left\langle\chi_{R}\left\{\operatorname{Tr}(M \bar{M})^{k}\right\}\right\rangle=\int_{N_{1} \times N_{2}} \chi_{R}\left\{\operatorname{Tr}(M \bar{M})^{k}\right\} e^{-\operatorname{Tr} M \bar{M}} d^{2} M=\frac{\chi_{R}\left\{N_{1}\right\} \chi_{R}\left\{N_{2}\right\}}{\chi_{R}\left\{\delta_{k, 1}\right\}}
$$

Universality of the tensor model.

Consider the integral over tensor $M_{a_{1} \ldots a_{r}}$. Then,

$$
\left\langle\chi_{R_{1}, \ldots, R_{r}}\right\rangle=\int \chi_{R}\left\{\operatorname{Tr}(M \bar{M})^{k}\right\} e^{-\operatorname{Tr} M \bar{M}} d^{2} M=C_{R_{1}, \ldots, R_{r}} \cdot \frac{\chi_{R_{1}}\left\{N_{1}\right\} \cdot \ldots \cdot \chi_{R_{r}}\left\{N_{r}\right\}}{\chi_{R_{1}}\left\{\delta_{k, 1}\right\} \cdot \ldots \cdot \chi_{R_{r}}\left\{\delta_{k, 1}\right\}}
$$

Here $\chi_{R_{1}, \ldots, R_{r}}$ is the generalized character, and $C_{R_{1}, \ldots, R_{r}}$ is the Clebsh-Gordan coefficient for the representations of the symmetric group.

Correlators in tensor models

$\mathrm{r}=2$
The invariant operators are given by a permutation

$$
\mathcal{K}_{\sigma}=\prod_{p=1}^{n} M_{a_{p} b_{p}} \bar{M}^{a_{p} b_{\sigma(p)}}
$$

where σ is a permutations from S_{n}. It can be symmetrically written as depending on two permutations,

$$
\mathcal{K}_{\sigma_{1}, \sigma_{2}}=\prod_{p=1}^{n} M_{a_{p} b_{p}} \bar{M}^{a_{\sigma_{1}(p)} b_{\sigma_{2}(p)}}=\mathcal{K}_{i d, \sigma_{1}^{-1} \circ \sigma_{2}}
$$

Correlators in tensor models

$\mathrm{r}=2$
The invariant operators are given by a permutation

$$
\mathcal{K}_{\sigma}=\prod_{p=1}^{n} M_{a_{p} b_{p}} \bar{M}^{a_{p} b_{\sigma(p)}}
$$

where σ is a permutations from S_{n}. It can be symmetrically written as depending on two permutations,

$$
\mathcal{K}_{\sigma_{1}, \sigma_{2}}=\prod_{p=1}^{n} M_{a_{p} b_{p}} \bar{M}^{a_{\sigma_{1}(p)} b_{\sigma_{2}(p)}}=\mathcal{K}_{i d, \sigma_{1}^{-1} \circ \sigma_{2}}
$$

$r=3$

The invariant $2 n$-point operators are parameterized by three permutations from S_{n} :

$$
\mathcal{K}_{\sigma_{1} \sigma_{2} \sigma_{3}}=\prod_{p=1}^{n} M_{a_{p} b_{p} c_{p}} \bar{M}^{a_{\sigma_{1}(p)} b_{\sigma_{2}(p)} c_{\sigma_{3}(p)}}
$$

Generalized characters

$r=2$ characters

$$
\chi_{R}\left\{\operatorname{Tr}(M \bar{M})^{k}\right\}=\frac{1}{n!} \sum_{R} \psi_{R}(\sigma) \mathcal{K}_{\sigma}
$$

where σ is a permutation from S_{n}, and $\psi_{R}(\sigma)$ is the character of the symmetric group S_{n} in the representation R. It can be also written in terms of operators depending on two permutations:

$$
\chi_{R_{1}, R_{2}} \equiv \frac{1}{n!} \sum_{\sigma_{1}, \sigma_{2} \in S_{n}} \psi_{R_{1}}\left(\sigma_{1}\right) \psi_{R_{2}}\left(\sigma_{2}\right) \mathcal{K}_{\sigma_{1}, \sigma_{2}}=\delta_{R_{1}, R_{2}} \frac{\chi_{R_{2}}\left\{\operatorname{Tr}(M \bar{M})^{k}\right\}}{\chi_{R_{1}}\left\{\delta_{k, 1}\right\}}
$$

The Clebsh-Gordan coefficients

Generalized characters

$r=2$ characters

$$
\chi_{R}\left\{\operatorname{Tr}(M \bar{M})^{k}\right\}=\frac{1}{n!} \sum_{R} \psi_{R}(\sigma) \mathcal{K}_{\sigma}
$$

where σ is a permutation from S_{n}, and $\psi_{R}(\sigma)$ is the character of the symmetric group S_{n} in the representation R. It can be also written in terms of operators depending on two permutations:

$$
\chi_{R_{1}, R_{2}} \equiv \frac{1}{n!} \sum_{\sigma_{1}, \sigma_{2} \in S_{n}} \psi_{R_{1}}\left(\sigma_{1}\right) \psi_{R_{2}}\left(\sigma_{2}\right) \mathcal{K}_{\sigma_{1}, \sigma_{2}}=\delta_{R_{1}, R_{2}} \frac{\chi_{R_{2}}\left\{\operatorname{Tr}(M \bar{M})^{k}\right\}}{\chi_{R_{1}}\left\{\delta_{k, 1}\right\}}
$$

The Clebsh-Gordan coefficients

$$
C_{R_{1} R_{2}}=\frac{1}{n!} \sum_{\gamma \in S_{n}} \psi_{R_{1}}(\gamma) \psi_{R_{2}}(\gamma)=\delta_{R_{1} R_{2}} \chi_{R}\left\{\delta_{k, 1}\right\}
$$

$r=3$ characters

$$
\chi_{R_{1} R_{2} R_{3}}:=\frac{1}{n!} \sum_{\left\{\sigma_{i}\right\} \in S_{n}} \psi_{R_{1}}\left(\sigma_{1}\right) \psi_{R_{2}}\left(\sigma_{2}\right) \psi_{R_{3}}\left(\sigma_{3}\right) \cdot \mathcal{K}_{\sigma_{1} \sigma_{2} \sigma_{3}}
$$

The Clebsh-Gordan coefficients

$r=3$ characters

$$
\chi_{R_{1} R_{2} R_{3}}:=\frac{1}{n!} \sum_{\left\{\sigma_{i}\right\} \in S_{n}} \psi_{R_{1}}\left(\sigma_{1}\right) \psi_{R_{2}}\left(\sigma_{2}\right) \psi_{R_{3}}\left(\sigma_{3}\right) \cdot \mathcal{K}_{\sigma_{1} \sigma_{2} \sigma_{3}}
$$

The Clebsh-Gordan coefficients

$$
C_{R_{1} R_{2} R_{3}}=\frac{1}{n!} \sum_{\gamma \in S_{n}} \psi_{R_{1}}(\gamma) \psi_{R_{2}}(\gamma) \psi_{R_{3}}(\gamma)
$$

Single equation

Single equation instead of infinite set of Ward identities in the Hermitian model.

Infinite set of Virasoro constraints

$$
\begin{array}{r}
L_{n} Z_{N}\left(p_{k}\right)=0, \quad n \geq-1 \\
L_{n}=\sum_{k}(k+n) p_{k} \frac{\partial}{\partial p_{k+n}}+\sum_{a=1}^{n-1} a(n-a) \frac{\partial^{2}}{\partial p_{a} \partial p_{n-a}}+ \\
+2 N n \frac{\partial}{\partial p_{n}}+N^{2} \delta_{n, 0}+N p_{1} \delta_{n+1,0}-\mu^{2}(n+2) \frac{\partial}{\partial p_{n+2}}
\end{array}
$$

Single equation

Single equation

Single equation instead of infinite set of Ward identities in the Hermitian model.

Infinite set of Virasoro constraints

$$
\begin{array}{r}
L_{n} Z_{N}\left(p_{k}\right)=0, \quad n \geq-1 \\
L_{n}=\sum_{k}(k+n) p_{k} \frac{\partial}{\partial p_{k+n}}+\sum_{a=1}^{n-1} a(n-a) \frac{\partial^{2}}{\partial p_{a} \partial p_{n-a}}+ \\
+2 N n \frac{\partial}{\partial p_{n}}+N^{2} \delta_{n, 0}+N p_{1} \delta_{n+1,0}-\mu^{2}(n+2) \frac{\partial}{\partial p_{n+2}}
\end{array}
$$

Single equation

$$
\sum_{n \geq 1} p_{n} L_{n-2} Z_{N}\left\{p_{k}\right\}=0
$$

W-representation

The single equation can be presented in the form

$$
\left(\hat{d}-2 \hat{O}^{(2)}\right) Z_{N}\left\{p_{k}\right\}=0
$$

where $\hat{d}=\sum_{k} k p_{k} \frac{\partial}{\partial p_{k}}$ is the grading operator, and $\hat{O}^{(2)}$ is an operator of grading 2.
Since \hat{d} is the grading operator, any operator of grading k commutes as

$$
\left[\hat{d}, \hat{O}^{(k)}\right]=k \hat{O}^{(k)}
$$

This implies that

$$
\hat{d} e^{\hat{O}^{(k)}}=e^{\hat{O}^{(k)}}\left(\hat{d}+k \hat{O}^{(k)}\right)
$$

and the equation

$$
\left(\hat{d}-k \hat{O}^{(k)}\right) \cdot Z=0
$$

is solved by

$$
Z=e^{\hat{O}^{(k)}} \cdot 1
$$

This is called W-representation.

A more general example

Consider the case when there are two infinite sets of Ward identities (matrix model with quartic potential depending on external matrix):

$$
\begin{aligned}
{ }_{3} \hat{L}_{n} Z\{p\} & =0, & & n \geq-1 \\
{ }_{3} \hat{W}_{n} Z\{p\} & =0, & & n \geq-2
\end{aligned}
$$

The single equation is

$$
\sum_{n=1} p_{3 n-1} \cdot{ }_{3} \hat{W}_{n-3} Z\{p\}-\sum_{n=1} p_{3 n-2} \cdot{ }_{3} \hat{L}_{n-2} Z\{p\}=0
$$

This equation reduces to

$$
\left(\hat{d}-4 \hat{O}_{4}-8 \hat{O}_{8}\right) Z\{p\}=0
$$

and the W-representation is

$$
Z\{p\}=P \exp \left(\int^{x}\left(4 x^{\prime 4} \hat{O}_{4}+8 x^{\prime 8} \hat{O}_{8}\right) \frac{d x^{\prime}}{x^{\prime}}\right) \cdot 1
$$

The rule of thumb: in order to get the single equation, one has to construct a combination bilinear in p_{k} and Ward identities such that it contains \hat{d}.

Two new basic properties of matrix models:

The average of a proper character is proportional to a character

The infinite set of Ward identities can be written as a single equation, which leads to the W-representation

Thank you for your attention!

