
Matrix and tensor models: recent progress

Andrei Mironov

P.N.Lebedev Physics Institute; ITEP; IITP



Basic properties of matrix models

Gaussian Hermitian matrix model:

the integral over Hermitian N ×N matrix H

ZN (pk) =

∫
dH exp

(
−µ

2

2 TrH2 +
∑
k
pkTrHk

k

)
∫
dH exp

(
−µ2

2 TrH2
)

with the Haar measure dH, ZN (pk) is understood as a formal power series in pk.
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Integrable property:

ZN (pk) is a τ -function of the Toda chain hierarchy, satis�es an in�nite set of integrable equations, the
�rst one being

ZN (pk)
∂2ZN (pk)

∂p2
1

−
(
∂ZN (pk)

∂p1

)2

= ZN+1(pk)ZN−1(pk)

or

∂2φN
∂p2

1

= exp
(
φN+1 − φN

)
− exp

(
φN − φN−1

)
The integrable times are tk = pk/k.
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Ward identities:

vanishing integrals of total derivatives∫
dH Tr

∂

∂H

[
TrHn+1 exp

(
−µ

2

2
TrH2 +

∑
k

pkTrHk

k

)]
= 0

at n ≥ −1 gives rise to the in�nite set of conditions:

LnZN (pk) = 0, n ≥ −1

Ln =
∑
k

(k + n)pk
∂

∂pk+n
+

n−1∑
a=1

a(n− a)
∂2

∂pa∂pn−a
+

+2Nn
∂

∂pn
+N2δn,0 +Np1δn+1,0 − µ2(n+ 2)

∂

∂pn+2

These are so called Virasoro constraints since

[Ln, Lm] = (n−m)Ln+m
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Solutions of the Virasoro constraints

There are many solutions to the Toda chain equations, but the solution of the in�nite set of
Virasoro constraints is unique:

ZN (pk) = 1 +
1

µ
α[1]p1 +

1

µ2

(
α[1,1]p

2
1 + α[2]p2

)
+ . . .

where the coe�cients α's are determined recursively.
Non-Gaussian potentials give rise to ambiguous integrals (dependence on the integration contour
choice).
Convenient basis: the Schur polynomials, characters of representations of the GL(N) group:

ZN (pk) = 1 +
1

µ
c[1]p1 +

1

µ2

(
c[1,1]

(p2
1 − p2)

2
+ c[2]

(p2
1 + p2)

2

)
+ . . . =

∑
R

1

µ|R|
cRχR{pk}

χR{pk} is the Schur function, R is the Young diagram.
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Schur functions

The de�nition of the Schur functions:

χR = det
i,j

hRi−i+j exp

(∑
k

pkz
k

k

)
=
∑
n

hnz
n

The Schur function as a character:

χR{pk} is a symmetric function of xi, pk =
∑
xki , and xi are the eigenvalues of the group element g in

representations R. In other words,

TrRg = χR{pk = Tr fg
k}

Examples:

χ[1]{pk} = p1 =
∑
i

xi, χ[1,1]{pk} = Tr [1,1]g =

(
Tr fg

)2

− Tr fg
2

2
=
p2

1 − p2

2
=
∑
i<j

xixj
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Character property of matrix models

Cauchy formula:

exp

(∑
k

pkTrHk

k

)
=
∑
R

χR{TrHk}χR{pk}

This means that

ZN (pk) =

∫
dH exp

(
−µ

2

2 TrH2 +
∑
k
pkTrHk

k

)
∫
dH exp

(
−µ2

2 TrH2
) =

∑
R

〈
χR{TrHk}

〉
χR{pk}

The main property:

1

µ|R|
cR =

〈
χR{TrHk}

〉
=
χR{N} · χR{δk,2}

χR{δk,1}
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Universality of the character property

Chern-Simons theory (unitary matrix model).

The Wilson average of a simple closed contour is equal to

〈χR(emi)〉 :=

∫
χR(emi)

N∏
i<j

sinh2

(
mi −mj

2

) N∏
i=1

exp

(
−m

2
i

2g2

)
dmi = qN |R| · q2C2(R) · χR{p∗}

q = eg
2/2, C2(R) is the eigenvalue of the 2nd Casimir operator, p∗k = qNk−q−Nk

qk−q−k is q-deformed pk = N .

Kontsevich model:

〈
QR{TrXk}

〉
=

∫
dXQR{TrXk} exp

(
−TrX2Λ

)∫
dX exp (−TrX2Λ)

=


QR/2{Tr Λ−k}QR/2{δk,1}

QR{δk,1}
if R|2

0 otherwise
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Tensor models

The rectangular complex matrix model:

〈
χR{Tr (MM̄)k}

〉
=

∫
N1×N2

χR{Tr (MM̄)k}e−TrMM̄d2M =
χR{N1}χR{N2}

χR{δk,1}

Universality of the tensor model.

Consider the integral over tensor Ma1...ar . Then,〈
χR1,...,Rr

〉
=

∫
χR{Tr (MM̄)k}e−TrMM̄d2M = CR1,...,Rr ·

χR1
{N1} · . . . · χRr{Nr}

χR1
{δk,1} · . . . · χRr{δk,1}

Here χR1,...,Rr is the generalized character, and CR1,...,Rr is the Clebsh-Gordan coe�cient for the
representations of the symmetric group.
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Correlators in tensor models

r=2

The invariant operators are given by a permutation

Kσ =

n∏
p=1

MapbpM̄
apbσ(p)

where σ is a permutations from Sn. It can be symmetrically written as depending on two permutations,

Kσ1,σ2 =

n∏
p=1

MapbpM̄
aσ1(p)bσ2(p) = Kid,σ−1

1 ◦σ2

r=3

The invariant 2n-point operators are parameterized by three permutations from Sn:

Kσ1σ2σ3
=

n∏
p=1

MapbpcpM̄
aσ1(p)bσ2(p)cσ3(p)
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Generalized characters

r = 2 characters

χR{Tr (MM̄)k} =
1

n!

∑
R

ψR(σ)Kσ

where σ is a permutation from Sn, and ψR(σ) is the character of the symmetric group Sn in the
representation R. It can be also written in terms of operators depending on two permutations:

χR1,R2
≡ 1

n!

∑
σ1,σ2∈Sn

ψR1
(σ1)ψR2

(σ2)Kσ1,σ2
= δR1,R2

χR2
{Tr (MM̄)k}
χR1{δk,1}

The Clebsh-Gordan coe�cients

CR1R2
=

1

n!

∑
γ∈Sn

ψR1
(γ)ψR2

(γ) = δR1R2
χR{δk,1}
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r = 3 characters

χR1R2R3
:=

1

n!

∑
{σi}∈Sn

ψR1(σ1)ψR2(σ2)ψR3(σ3) · Kσ1σ2σ3

The Clebsh-Gordan coe�cients

CR1R2R3 =
1

n!

∑
γ∈Sn

ψR1(γ)ψR2(γ)ψR3(γ)
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Single equation

Single equation instead of in�nite set of Ward identities in the Hermitian model.

In�nite set of Virasoro constraints

LnZN (pk) = 0, n ≥ −1

Ln =
∑
k

(k + n)pk
∂

∂pk+n
+

n−1∑
a=1

a(n− a)
∂2

∂pa∂pn−a
+

+2Nn
∂

∂pn
+N2δn,0 +Np1δn+1,0 − µ2(n+ 2)

∂

∂pn+2

Single equation

∑
n≥1

pnLn−2ZN{pk} = 0
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W -representation

The single equation can be presented in the form(
d̂− 2Ô(2)

)
ZN{pk} = 0

where d̂ =
∑
k kpk

∂
∂pk

is the grading operator, and Ô(2) is an operator of grading 2.

Since d̂ is the grading operator, any operator of grading k commutes as

[d̂, Ô(k)] = kÔ(k)

This implies that

d̂eÔ
(k)

= eÔ
(k)

(d̂+ kÔ(k))

and the equation

(d̂− kÔ(k)) · Z = 0

is solved by

Z = eÔ
(k)

· 1

This is called W -representation.
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A more general example

Consider the case when there are two in�nite sets of Ward identities (matrix model with quartic
potential depending on external matrix):

3L̂nZ{p} = 0, n ≥ −1

3ŴnZ{p} = 0, n ≥ −2

The single equation is∑
n=1

p3n−1 · 3Ŵn−3Z{p} −
∑
n=1

p3n−2 · 3L̂n−2Z{p} = 0

This equation reduces to (
d̂− 4Ô4 − 8Ô8

)
Z{p} = 0

and the W -representation is

Z{p} = P exp

(∫ x (
4x′4Ô4 + 8x′8Ô8

)dx′
x′

)
· 1
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The rule of thumb: in order to get the single equation, one has to construct a combination
bilinear in pk and Ward identities such that it contains d̂.
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Two new basic properties of matrix models:

The average of a proper character is proportional to a character

The in�nite set of Ward identities can be written as a single equation, which leads to the
W -representation
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Thank you for your attention!
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