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XXX Heisenberg spin chain and QQ-system

For a spin chain with a fundamental representation (on the space C2 with
basis | ↑〉 and | ↓〉) at each site, the Hamiltonian is

H =
L∑

j=1

(1− Pj,j+1) .

Its spectrum is described by Bethe equations(
u1,j + i/2
u1,j − i/2

)L

= −
K∏

k=1

u1,j − u1,k + i

u1,j − u1,k − i
, j = 1, . . . ,K ,

where energies are given by

E =
K∑
j=1

1
u21,j + 1/4

.
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XXX Heisenberg spin chain and QQ-system

These Bethe equations are equivalent to canonical QQ-system relation
(f ±(u) ≡ f (u ± i/2)):

Q+
1 Q
−
2 − Q−1 Q+

2 = Q∅Q12

where
Q∅ = uL, Q12 = 1

and

Q1(u) =
K∏
j=1

(u − u1,j) ,

Q2(u) = const×
L−K+1∏

j=1

(u − u2,j).

Q1 describes excitations with respect to pseudovacuum |0〉 = | ↑↑ . . . ↑〉,
while Q2 - excitations with respect to pseudovacuum |0′〉 = | ↓↓ . . . ↓〉.
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XXX Heisenberg spin chain and QQ-system
Similar in the case of sl(3) spin chain the spectrum can be described with
canonical QQ relations (Q∅ = uL,Q123 = 1):

QAQAab = Q+
AaQ

−
Ab − Q−AaQ

+
Ab

depicted in Hasse diagram

QQ relations and path in Hasse diagram give us Bethe equations:

Q+
∅

Q−∅
= −Q++

a

Q−−a

Q−ab
Q+

ab

∣∣∣∣
u=ua,n

1 = −Q++
ab

Q−−ab

Q−a
Q+

a

∣∣∣∣
u=uab,n
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ABJM theory and its QSC

ABJM is N = 6 superconformal Chern-Simons-matter theory with
gauge group U(N)× U(N) on R1,2 and Chern-Simons levels k and
−k . The field content is given by gauge fields Aµ and Âµ, four
complex scalars Y A and four Weyl spinors ψA.

In planar limit k,N →∞, λ ≡ N
k = fixed it is dual to

superstring theory on AdS4 × CP3

We will be interested in anomalous dimensions of operators

tr
[
DS

+(Y 1Y †4 )L
]

with Dynkin labels [L + S ,S ; L, 0, L] under OSp(4|6)

Aharony, Bergman, Jafferis, Maldacena 2008
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ABJM theory and its QSC: Pµ-system

Vector form (CP3 isometry group SO(6) ' SU(4)):
PA(u)

∣∣∣
A=1,...,6

, µAB(u) = −µBA(u)
∣∣∣
A,B=1,...,6

P̃A − PA = µAB η
BC PC , µ̃AB − µAB = PAP̃B − PBP̃A.

P5P6 − P2P3 + P1P4 = 1, µAB η
BC µCD = 0, µ̃AB(u) = µAB(u + i)

.

2h+2i

2h+i

2h−i

2h−2i

−2h 2h

u

µ
~

µab

ab

.

2h+2i

2h+i

2h−i

2h−2i

−2h 2h

u

a

Pa

~
P

Gromov, Kazakov, Leurent, Volin, 2013
Cavaglia, Fioravanti, Gromov, Tateo, 2014
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ABJM theory and its QSC: Pµ-system

Spinor form (CP3 isometry group SO(6) ' SU(4)): the matrix
µAB(u) is decomposed in terms of 4 + 4 functions νa, νa as

µAB = νa (σAB) b
a νb , νa νa = 0.

ν̃a(u) = e iP νa(u + i), ν̃a(u) = e−iP νa(u + i)

Riemann-Hilbert problem to solve:

P̃ab − Pab = νaν̃b − νbν̃a, P̃ab − Pab = −νaν̃b + νbν̃a,

ν̃a = −Pab ν
b, ν̃a = −Pab νb.

Pab = PAσ
A
ab =


0 −P1 −P2 −P5
P1 0 −P6 −P3
P2 P6 0 −P4
P5 P3 P4 0

 , Pab is inverse matrix

Bombardelli, Cavaglia, Fioravanti, Gromov, Tateo, 2017
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ABJM theory and its QSC: Pµ-system

f [n](u) = f (u + ni/2)

Bombardelli, Cavaglia, Fioravanti, Gromov, Tateo, 2017
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ABJM theory and its QSC: Pµ-system

Boundary conditions in sl(2) sector (large u):

Pa ' (A1u
−L, A2u

−L−1, A3u
+L+1, A4u

+L, A0u
0),

−A1A4 =
(−∆ + L− S)(−∆ + L + S − 1)(∆ + L− S + 1)(∆ + L + S)

L2(2L + 1)
,

−A2A3 =
(−∆ + L− S + 1)(−∆ + L + S)(∆ + L− S + 2)(∆ + L + S + 1)

(L + 1)2(2L + 1)
,

νa ∼
(
u∆−L, u∆+1, u∆, u∆+L+1) .

L ∈ N+ (twist), S ∈ N+ (spin) and ∆ is the conformal dimension.
The anomalous dimension γ is given by γ = 4− L− S .

Cavaglia, Fioravanti, Gromov, Tateo, 2014
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ABJM theory and its QSC: solution for sl(2) sector
We will look for solution at weak coupling in the form (P0 = P5 = P6)

P1 = (xh)−Lp1 = (xh)−L

(
1 +

∞∑
k=1

∞∑
l=0

c
(l)
1,k

h2l+k

xk

)
, νi (u) =

∞∑
l=1

h2l−Lν
(l)
i (u) ,

P2 = (xh)−Lp2 = (xh)−L

(
h

x
+
∞∑
k=2

∞∑
l=0

c
(l)
2,k

h2l+k

xk

)
,

P0 = (xh)−Lp0 = (xh)−L

(
∞∑
l=0

A
(l)
0 h2luL +

L−1∑
j=0

∞∑
l=0

m
(l)
j h2luj +

∞∑
k=1

∞∑
l=0

c
(l)
0,k

h2l+k

xk

)
,

P3 = (xh)−Lp3 = (xh)−L

(
∞∑
l=0

A
(l)
3 h2lu2L+1 +

2L∑
j=0

∞∑
l=0

k
(l)
j h2luj +

∞∑
k=1

∞∑
l=0

c
(l)
3,k

h2l+k

xk

)
,

where

x ≡ x(u) =
u +
√
u2 − 4h2

2h
c

(l)
i,k are some functions of spin S only, otherwise they are just constants. The
analytically continued though the cut functions are defined as

~Pi =
(x
h

)L
~pi , ~pi = pi

∣∣∣
x→1/x

.

A. Onishchenko Difference equations and Integrability



ABJM theory and its QSC: solution for sl(2) sector

Initial conditions for iterative solution:

p1,0 = 1, p2,0 = 0,
p̃1,0(u) ∼ 1 + O(u), p̃2,0(u) ∼ u + O(u2).

Baxter equations to solve (state quantum numbers are specified
by LO Baxter polynomial Q(u) ∼ ν[1]

1 (u)) :

ν
[3]
1

P[1]
1

−
ν

[−1]
1

P[−1]
1

− σ

(
P[1]

0

P[1]
1

−
P[−1]

0

P[−1]
1

)
ν

[1]
1 = −σ

(
P[1]

2

P[1]
1

−
P[−1]

2

P[−1]
1

)
ν

[1]
2 .

ν
[3]
2

P[1]
1

−
ν

[−1]
2

P[−1]
1

+ σ

(
P[1]

0

P[1]
1

−
P[−1]

0

P[−1]
1

)
ν

[1]
2 = σ

(
P[1]

3

P[1]
1

−
P[−1]

3

P[−1]
1

)
ν

[1]
1 .

where

σ ≡ e iP = Q [1](0)/Q [−1](0) , Q is LO Baxter polynomial

Marboe, Volin, 2014; Anselmetti, Bombardelli, Cavaglia, Tateo, 2015
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ABJM theory and its QSC: solution for sl(2) sector

Coefficients are fixed from equations:

νa(u) + ν̃a(u) = νa(u) + σ ν
[2]
a (u)

νa(u)− ν̃a(u)√
u2 − 4h2

=
νa(u)− σ ν[2]

a (u)√
u2 − 4h2

 free of cuts on real axis

(
ν1 + σ ν

[2]
1

)(
p0 − (hx)L

)
= p2

(
ν2 + σ ν

[2]
2

)
− p1

(
ν3 + σ ν

[2]
3

)
,(

ν2 + σ ν
[2]
2

)(
p0 + (hx)L

)
= p3

(
ν1 + σ ν

[2]
1

)
+ p1

(
ν4 + σ ν

[2]
4

)
.

σ ν
[2]
1 = P0 ν1 − P2 ν2 + P1 ν3, P̃2 − P2 = σ

(
ν3ν

[2]
1 − ν1ν

[2]
3

)
,

σ ν
[2]
2 = −P0 ν2 + P3 ν1 + P1 ν4, P̃1 − P1 = σ

(
ν2ν

[2]
1 − ν1ν

[2]
2

)
.

Marboe, Volin, 2014; Anselmetti, Bombardelli, Cavaglia, Tateo, 2015
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ABJM theory and its QSC: solution for sl(2) sector

The most complex part is the solution at each perturbative order k of
two Baxter equations, which for L = 1 take the form:

BS1 [q1] ≡ (u + i/2)q
(k)[2]
1 (u)− i(2S + 1)q

(k)
1 (u)− (u − i/2)q

(k)[−2]
1 (u) =V

(k)
1 ,

BS2 [q2] ≡ (u + i/2)q
(k)[2]
2 (u) + i(2S + 1)q

(k)
2 (u)− (u − i/2)q

(k)[−2]
2 (u) =V

(k)
2 .

q
(k)
1 (u) = ν

(k)[1]
1 (u) , q

(k)
2 (u) = ν

(k)[1]
2 (u)

For fixed integer spins the solution is expressed in terms of
polynomials, rational functions and generalized Hurwitz functions

ηa1,a2,...,ak (u) =
∑

nk>nk−1>···>n1≥0

k∏
i=1

(sgn(ai ))ni−ni−1−1

(u + ini )|ai |
,

Marboe, Volin, 2014; Anselmetti, Bombardelli, Cavaglia, Tateo, 2015
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ABJM theory and its QSC: solution for sl(2) sector
Solution of Baxter equations could be written as:

q
(k)
1 = FS

1

[
V

(k)
1

]
+ QSΦ

per,(k)
1 + ZSΦ

anti,(k)
1

q
(k)
2 = FS

2

[
V

(k)
2

]
+ QSΦ

anti,(k)
2 + ZSΦ

per,(k)
2

where (∇±Ψ±g = g ,∇±g = g ∓ g [2]):

FS
1 [f ] = −QSΨ+

(
1

u + i/2
Ψ−

(
QS(−1)S f

)[2]
)
−QSΨ+

(
PS(−1)S f

)
+PSΨ−

(
QS(−1)S f

)
FS
2 [f ] = −QSΨ−

(
1

u + i/2
Ψ+

(
QS(−1)S f

)[2]
)

+QSΨ−
(
PS(−1)S f

)
−PSΨ+

(
QS(−1)S f

)
and

PS(u) = i

[ S−1
2 ]∑

k=0

1
S − k

QS−1−2k(u)

QS (u) =
(−1)SΓ

( 1
2 + iu

)
S!Γ

( 1
2 + iu − S

) 2F1

(
−S , 1

2
+ iu;

1
2

+ iu − S ;−1
)
,

ZS(u) = iσ

b S−1
2 c∑

k=0

1
S − k

QS−1−2k (u) + ση−1(u + i/2)QS (u)

Lee, AO, 2018
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ABJM theory and its QSC: solution for sl(2) sector
To obtain the solution for arbitrary integer spins we will need to
introduce new class of functions: sums of Baxter polynomials

〈Q (u) |w1 (•) ,w2 (•) , . . . ,wn (•)〉 =
∑

S≥j1>j2...>jn>0

QS−j1 (u)
∏
k

wk (jk) ,

〈Q (u) |〉 = QS (u) .

For example〈
Q (u) | (−1)•

(•)3 ,
1

(S + 1− •)2

〉
=

∑
S≥j1>j2>0

QS−j1(u)
(−1)j1

j31

1
(S + 1− j2)2

The weights are not arbitrary, but take the form

1
•n = n+(•) , (−)•

•n = n−(•) ,

1
(S + 1− •)n = n+(•) , (−)•

(S + 1− •)n = n−(•) ,

1
(2S + 1− •)n = n̂+(•) , (−)•

(2S + 1− •)n = n̂−(•) .

Lee, AO, 2019
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ABJM theory and its QSC: solution for sl(2) sector

Moreover, the introduced sums have a number of nice properties under
shifts (a = ±1):

Q
[2a]
S = QS + 2

S∑
k=1

akQS−k = QS + 2 〈Q|0a〉

〈Q|w ,W 〉[2a] = 〈Q|w ,W 〉+ 2 〈Q|0a, 0a · w ,W 〉 .
and partial fractions:

QS

u + a i
2

=
(−a)S

u + a i
2

+ 2ia
〈
Q|0a, 1−

〉
+ 2ia

〈
Q|1−a

〉

〈Q|w ,W 〉
u + a i

2

=
(−a)S

u + a i
2

〈0−a · w ,W 〉+ 2ia
〈
Q|0a, 1−, 0−a · w ,W

〉
+ 2ia

〈
Q|1−a, 0−a · w ,W

〉
.

In addition this class of functions is closed under differentiation.
Lee, AO, 2019
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ABJM theory and its QSC: solution for sl(2) sector

To find particular solutions for arbitrary spins we introduce the idea of
dictionary - find recursively images FS

i [f ] for canonical inhomogeneities
f . Consider for example FS

1 image for 〈Q (u) |w ,W 〉:

BS
1 [〈Q|w ,W 〉] =

S∑
j=1

BS
1 [QS−j ]w (j) |W 〉j

= −2i
S∑

j=1

QS−j jw (j) |W 〉j = −2i 〈Q|(−1)+ · w ,W 〉

Now, replacing w → 1+ · w and taking FS
1 from both side and using

FS
1 [BS1 [f ]] = f we get

FS
1 [〈Q|w ,W 〉] = i

2 〈Q|1+ · w ,W 〉

This way we may construct all required images for arbitrary order of
perturbation theory and stay all the time within the introduced class of
functions.

Lee, AO, 2019
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ABJM theory and its QSC: solution for sl(2) sector

At four loop order we obtained

γ(S) = γ(0)(S)h2 + γ(1)(S)h4 + . . .

where
γ(0)(S) = 4

(
H̄1 + H̄−1 − 2H̄i

)
γ(1)(S) = 16

{
3H̄−2,−1−2H̄−2,i − H̄−2,1− H̄−1,−2 +2H̄−1,2i − H̄−1,2−6H̄i,−2

+ 12H̄i,2i − 6H̄i,2 − 6H̄2i,−1 + 4H̄2i,i + 2H̄2i,1 − H̄1,−2 + 2H̄1,2i − H̄1,2 + 3H̄2,−1

−2H̄2,i−H̄2,1+2H̄−1,i,−1−2H̄−1,i,1+8H̄i,−1,−1−12H̄i,−1,i +4H̄i,−1,1−16H̄i,i,−1

+ 16H̄i,i,i + 4H̄i,1,−1 − 4H̄i,1,i + 2H̄1,i,−1 − 2H̄1,i,1

}
+ 8 (H−1 − H1) ζ2

and we introduced new sums

Ha,b,...(S) =
S∑

k=1

<[(a/|a|)k ]

k |a|
Hb,...(k) Ha,... = Ha,...(S) H̄a,... = Ha,...(2S)

Lee, AO, 2017
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ABJM theory and its QSC: solution for sl(2) sector

At six loops for fixed spin values we get

γ(2)(5) =
16928ζ(3)

25
− 749207584

1771875
+

92912π2

1575
+

322π4

75
− 33856

225
π2 log(2)

γ(2)(10) =
10143008ζ(3)

11025
− 3035620455261599584

143248910889459375
+

4641541857896π2

173241313245

+
1126π4

225
− 20286016π2 log(2)

99225

γ(2)(15) =
265411493888ζ(3)

225450225
− 3624275079466514140265279547904

66590160573335764008440671875

+
3593709256322943648256π2

98455081120952180625
+

182144π4

32175
− 530822987776π2 log(2)

2029052025

γ(2)(20) =
30827191890924032ζ(3)

23520996524025
+

1948857047511423184964102975203491228085647584
7482144284371332845393775248854242377015625

+
897376012402828916790600935968π2

106034967193798706401189726875
+

62075752π4

10392525
− 61654383781848064π2 log(2)

211688968716225

and the results for arbitrary integer spins can be found on arXiv
Lee, AO, 2019
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N = 4 SYM theory and its QSC

N = 4 SYM is N = 4 superconformal Yang-Mills theory with gauge
group SU(N) on R1,3. The field content is given by gauge field Aµ,
six scalars φab in antisymmetric representation of SU(4)R together
with four chiral ψa

α fermions in fundamental and four anti-chiral
ψ̄α̇a fermions in anti-fundamental representation of SU(4)R .

In planar limit N →∞, λ ≡ g2N = fixed it is dual to
superstring theory on AdS5 × S5

We will be interested in anomalous dimensions of operators

tr
[
DS

+φ
L
34

]
with Dynkin labels [L + S ,S , S ; 0, L, 0] under PSU(2, 2|4)

Brink, Scherk, Schwarz, 1977
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N = 4 SYM theory and its QSC: Pµ-system

P-functions in this case carry indexes corresponding to isometry group of
S5 (SU(4)R R-symmetry of N = 4 SYM) and Riemann-Hilbert problem
for sl(2)-sector takes the form (a, b = 1, . . . , 4):

µab − µ̃ab = P̃aPb − P̃bPa ,

P̃a = (µχ) b
a Pb ,

µ̃ab = µ
[2]
ab ,

where µab is antisymmetric matrix, (µχ) b
a ≡ µacχcb and

χab =


0 0 0 −1
0 0 +1 0
0 −1 0 0

+1 0 0 0


Gromov, Kazakov, Leurent, Volin, 2013
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N = 4 SYM theory and its QSC: Pµ-system

Boundary conditions in sl(2) sector (large u):

P1 ' A1u
− L+2

2 ,P2 ' A2u
− L

2 ,P3 ' A3u
L−2
2 ,P4 ' A4u

L
2 ,

µ1 ∼ u∆−L, µ2 ∼ u∆−1, µ3 ∼ u∆, µ4 ∼ u∆+L, µ5 ∼ u∆+L

with

A1A4 =
[(L− S + 2)2 −∆2][(L + S)2 −∆2]

16iL(L + 1)
,

A2A3 =
[(L + S − 2)2 −∆2][(L− S)2 −∆2]

16iL(L− 1)
.

L ∈ N+ (twist), S ∈ N+ (spin) and ∆ is the conformal dimension.
The anomalous dimension γ is given by γ = 4− L− S .

Gromov, Kazakov, Leurent, Volin, 2013
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N = 4 SYM theory and its QSC: solution for sl(2) sector

The solution in this case goes similar to ABJM case considered before. In
particular we introduce similar ansatz for P-functions and reduce the
perturbative solution of Riemann-Hilbert problem to iterative solution of
two inhomogeneous second-order Baxter and one inhomogeneous
first-order difference equations. The coefficients in the ansatz for
P-functions are then determined from the similar constraint equations.

The two Baxter equations are both of the form

BS [q] = (u +
i

2
)2q[2](u) + (u− i

2
)2q[−2](u)− (2u2− 1

2
−S(S +1))q(u) = V (u)

while the first-order difference equation is given by

∇r(u) = r(u)− r(u + i) = V (u) .
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N = 4 SYM theory and its QSC: solution for sl(2) sector

For this model and twist 2 operators we may also introduce class of
functions - sums of Baxter polynomials and find their rules under shifts,
multiplication by simple fractions, differentiation and so on. The
corresponding analysis is however more involved as leading order Baxter
polynomials in this case are more complex functions

QS(u) = 3F2

(
−S , S + 1,

1
2
− i u; 1, 1; 1

)
Within this class of functions we may recursively determine all the
required images both for second-order Baxter and first-order difference
equations needed for finding corresponding particular solutions for in
principle arbitrary prescribed order in perturbation theory. As an example
we re-derived known four-loop anomalous dimensions of twist 2 operators.
The results can be found on arXiv. Interesting fact is that the weights in
sums of Baxter polynomials are the same as for ABJM model, where we
have seen the appearance of new harmonic sums decorated by fourth root
of unity. Recently, the latter also appeared in the reconstruction of
NNNLO eigenvalue of BFKL kernel performed by Velizhanin.

AO, 2021
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Conclusion and future directions

We have introduced new class of special functions relevant to
the solution of long-range spin-chains and studied their
properties
We have also performed similar analysis for twist 2 operators
within ABJM model.
Obtained results gives us hope that similar techniques will also
work for higher twists and other models.
An extension of computational techniques to twisted ABJM
and N = 4 theories
Develop techniques for strong coupling and large spin
expansion
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Thank you for your attention!
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