Difference equations and Integrability

Andrei Onishchenko

BLTP JINR, Budker INP, SINP MSU

AQFT-2021

Outline

(1) $X X X$ Heisenberg spin chain and $Q Q$-system
(2) ABJM theory and its QSC

- $\mathbf{P} \mu$-system
- Solution for $s l(2)$ sector at fixed integer spins
- Solution for $s /(2)$ sector at arbitrary integer spins
(3) $\mathcal{N}=4$ SYM theory and its QSC
- $\mathbf{P} \mu$-system
- Solution for $s /(2)$ sector at arbitrary integer spins
(4) Conclusion and future directions

$X X X$ Heisenberg spin chain and $Q Q$-system

For a spin chain with a fundamental representation (on the space \mathbb{C}^{2} with basis $|\uparrow\rangle$ and $|\downarrow\rangle$) at each site, the Hamiltonian is

$$
H=\sum_{j=1}^{L}\left(1-P_{j, j+1}\right) .
$$

Its spectrum is described by Bethe equations

$$
\left(\frac{u_{1, j}+i / 2}{u_{1, j}-i / 2}\right)^{L}=-\prod_{k=1}^{K} \frac{u_{1, j}-u_{1, k}+i}{u_{1, j}-u_{1, k}-i}, \quad j=1, \ldots, K
$$

where energies are given by

$$
E=\sum_{j=1}^{K} \frac{1}{u_{1, j}^{2}+1 / 4}
$$

XXX Heisenberg spin chain and $Q Q$-system

These Bethe equations are equivalent to canonical $Q Q$-system relation $\left(f^{ \pm}(u) \equiv f(u \pm i / 2)\right)$:

$$
Q_{1}^{+} Q_{2}^{-}-Q_{1}^{-} Q_{2}^{+}=Q_{\emptyset} Q_{12}
$$

where

$$
Q_{\emptyset}=u^{L}, \quad Q_{12}=1
$$

and

$$
\begin{aligned}
& Q_{1}(u)=\prod_{j=1}^{K}\left(u-u_{1, j}\right) \\
& Q_{2}(u)=\text { const } \times \prod_{j=1}^{L-K+1}\left(u-u_{2, j}\right)
\end{aligned}
$$

Q_{1} describes excitations with respect to pseudovacuum $|0\rangle=|\uparrow \uparrow \ldots \uparrow\rangle$, while Q_{2} - excitations with respect to pseudovacuum $\left|0^{\prime}\right\rangle=|\downarrow \downarrow \ldots \downarrow\rangle$.

$X X X$ Heisenberg spin chain and $Q Q$-system

Similar in the case of $s /(3)$ spin chain the spectrum can be described with canonical $Q Q$ relations ($Q_{\emptyset}=u^{L}, Q_{123}=1$):

$$
Q_{A} Q_{A a b}=Q_{A a}^{+} Q_{A b}^{-}-Q_{A a}^{-} Q_{A b}^{+}
$$

depicted in Hasse diagram

$Q Q$ relations and path in Hasse diagram give us Bethe equations:

$$
\begin{aligned}
\frac{Q_{\emptyset}^{+}}{Q_{\emptyset}^{-}} & =-\left.\frac{Q_{a}^{++}}{Q_{a}^{-}-} \frac{Q_{a b}^{-}}{Q_{a b}^{+}}\right|_{u=u_{a, n}} \\
1 & =-\left.\frac{Q_{a b}^{++}}{Q_{a b}^{-}} \frac{Q_{a}^{-}}{Q_{a}^{+}}\right|_{u=u_{a b, n}}
\end{aligned}
$$

ABJM theory and its QSC

ABJM is $\mathcal{N}=6$ superconformal Chern-Simons-matter theory with gauge group $U(N) \times U(N)$ on $\mathbb{R}^{1,2}$ and Chern-Simons levels k and $-k$. The field content is given by gauge fields A_{μ} and \hat{A}_{μ}, four complex scalars Y^{A} and four Weyl spinors ψ_{A}.

In planar limit $k, N \rightarrow \infty, \lambda \equiv \frac{N}{k}=$ fixed it is dual to superstring theory on $A d S_{4} \times \mathbb{C P}^{3}$

We will be interested in anomalous dimensions of operators

$$
\operatorname{tr}\left[D_{+}^{S}\left(Y^{1} Y_{4}^{\dagger}\right)^{L}\right]
$$

with Dynkin labels $[L+S, S ; L, 0, L]$ under $\operatorname{OSp}(4 \mid 6)$
Aharony, Bergman, Jafferis, Maldacena 2008

ABJM theory and its QSC: $\mathbf{P} \mu$-system

Vector form ($C P^{3}$ isometry group $\left.S O(6) \simeq S U(4)\right)$:
$\left.\mathbf{P}_{A}(u)\right|_{A=1, \ldots, 6}, \quad \mu_{A B}(u)=-\left.\mu_{B A}(u)\right|_{A, B=1, \ldots, 6}$

$$
\widetilde{\mathbf{P}}_{A}-\mathbf{P}_{A}=\mu_{A B} \eta^{B C} \mathbf{P}_{C}, \quad \widetilde{\mu}_{A B}-\mu_{A B}=\mathbf{P}_{A} \widetilde{\mathbf{P}}_{B}-\mathbf{P}_{B} \widetilde{\mathbf{P}}_{A}
$$

$$
\mathbf{P}_{5} \mathbf{P}_{6}-\mathbf{P}_{2} \mathbf{P}_{3}+\mathbf{P}_{1} \mathbf{P}_{4}=1, \quad \mu_{A B} \eta^{B C} \mu_{C D}=0, \quad \widetilde{\mu}_{A B}(u)=\mu_{A B}(u+i)
$$

Gromov, Kazakov, Leurent, Volin, 2013 Cavaglia, Fioravanti, Gromov, Tateo, 2014

ABJM theory and its QSC: $\mathbf{P} \mu$-system

Spinor form ($C P^{3}$ isometry group $S O(6) \simeq S U(4)$): the matrix $\mu_{A B}(u)$ is decomposed in terms of $4+4$ functions ν_{a}, ν^{a} as

$$
\begin{gathered}
\mu_{A B}=\nu^{a}\left(\sigma_{A B}\right)_{a}^{b} \quad \nu_{b}, \quad \nu^{a} \nu_{a}=0 . \\
\widetilde{\nu}_{a}(u)=e^{i \mathcal{P}} \nu_{a}(u+i), \quad \widetilde{\nu}^{a}(u)=e^{-i \mathcal{P}} \nu^{a}(u+i)
\end{gathered}
$$

Riemann-Hilbert problem to solve:

$$
\begin{aligned}
\widetilde{\mathbf{P}}_{a b}-\mathbf{P}_{a b} & =\nu_{a} \tilde{\nu}_{b}-\nu_{b} \tilde{\nu}_{a}, \quad \widetilde{\mathbf{P}}^{a b}-\mathbf{P}^{a b}=-\nu^{a} \tilde{\nu}^{b}+\nu^{b} \tilde{\nu}^{a}, \\
\tilde{\nu}_{a} & =-\mathbf{P}_{a b} \nu^{b}, \quad \tilde{\nu}^{a}=-\mathbf{P}^{a b} \nu_{b} .
\end{aligned}
$$

$\mathbf{P}_{a b}=\mathbf{P}_{A} \sigma_{a b}^{A}=\left(\begin{array}{cccc}0 & -\mathbf{P}_{1} & -\mathbf{P}_{2} & -\mathbf{P}_{5} \\ \mathbf{P}_{1} & 0 & -\mathbf{P}_{6} & -\mathbf{P}_{3} \\ \mathbf{P}_{2} & \mathbf{P}_{6} & 0 & -\mathbf{P}_{4} \\ \mathbf{P}_{5} & \mathbf{P}_{3} & \mathbf{P}_{4} & 0\end{array}\right), \quad \mathbf{P}^{a b}$ is inverse matrix
Bombardelli, Cavaglia, Fioravantii, Gromov, Tateo, $201 \mathbf{\underline { \underline { 1 } } 7}$

ABJM theory and its QSC: $\mathbf{P} \mu$-system

$$
f^{[n]}(u)=f(u+n i / 2)
$$

Bombardelli, Cavaglia, Fioravanti, Gromov, Tateo, 2017

ABJM theory and its QSC: $\mathbf{P} \mu$-system

Boundary conditions in $s /(2)$ sector (large u):

$$
\begin{aligned}
\mathbf{P}_{a} & \simeq\left(A_{1} u^{-L}, A_{2} u^{-L-1}, A_{3} u^{+L+1}, A_{4} u^{+L}, A_{0} u^{0}\right), \\
-A_{1} A_{4}= & \frac{(-\Delta+L-S)(-\Delta+L+S-1)(\Delta+L-S+1)(\Delta+L+S)}{L^{2}(2 L+1)}, \\
-A_{2} A_{3} & =\frac{(-\Delta+L-S+1)(-\Delta+L+S)(\Delta+L-S+2)(\Delta+L+S+1)}{(L+1)^{2}(2 L+1)}, \\
& \nu_{a} \sim\left(u^{\Delta-L}, u^{\Delta+1}, u^{\Delta}, u^{\Delta+L+1}\right) .
\end{aligned}
$$

$L \in \mathbb{N}^{+}$(twist), $S \in \mathbb{N}^{+}$(spin) and Δ is the conformal dimension. The anomalous dimension γ is given by $\gamma=\triangle-L-S$.

Cavaglia, Fioravanti, Gromov, Tateo, 2014

ABJM theory and its QSC: solution for s/(2) sector

We will look for solution at weak coupling in the form ($\mathbf{P}_{\mathbf{0}}=\mathbf{P}_{5}=\mathbf{P}_{6}$)

$$
\begin{aligned}
& \mathbf{P}_{1}=(x h)^{-L} \mathbf{p}_{1}=(x h)^{-L}\left(1+\sum_{k=1}^{\infty} \sum_{l=0}^{\infty} c_{1, k}^{(I)} \frac{h^{2 l+k}}{x^{k}}\right), \nu_{i}(u)=\sum_{l=1}^{\infty} h^{2 l-L} \nu_{i}^{(l)}(u), \\
& \mathbf{P}_{2}=(x h)^{-L} \mathbf{p}_{2}=(x h)^{-L}\left(\frac{h}{x}+\sum_{k=2}^{\infty} \sum_{l=0}^{\infty} c_{2, k}^{(I)} \frac{h^{2 l+k}}{x^{k}}\right), \\
& \mathbf{P}_{0}=(x h)^{-L} \mathbf{p}_{0}=(x h)^{-L}\left(\sum_{l=0}^{\infty} A_{0}^{(I)} h^{2 l} u^{L}+\sum_{j=0}^{L-1} \sum_{l=0}^{\infty} m_{j}^{(l)} h^{2 l} u^{j}+\sum_{k=1}^{\infty} \sum_{l=0}^{\infty} c_{0, k}^{(1)} \frac{h^{2 l+k}}{x^{k}}\right), \\
& \mathbf{P}_{3}=(x h)^{-L} \mathbf{p}_{3}=(x h)^{-L}\left(\sum_{l=0}^{\infty} A_{3}^{(I)} h^{2 l} u^{2 L+1}+\sum_{j=0}^{2 L} \sum_{l=0}^{\infty} k_{j}^{(I)} h^{2 l} u^{j}+\sum_{k=1}^{\infty} \sum_{l=0}^{\infty} c_{3, k}^{(I)} \frac{h^{2 l+k}}{x^{k}}\right),
\end{aligned}
$$ where

$$
x \equiv x(u)=\frac{u+\sqrt{u^{2}-4 h^{2}}}{2 h}
$$

$c_{i, k}^{(/)}$are some functions of spin S only, otherwise they are just constants. The analytically continued though the cut functions are defined as

$$
\tilde{\mathbf{P}}_{i}=\left(\frac{x}{h}\right)^{L} \tilde{\mathbf{p}}_{i}, \quad \tilde{\mathbf{p}}_{i}=\left.\mathbf{p}_{i}\right|_{x \rightarrow 1 / x}
$$

ABJM theory and its QSC: solution for sl(2) sector

Initial conditions for iterative solution:

$$
\begin{aligned}
\mathbf{p}_{1,0}=1, & \mathbf{p}_{2,0}=0 \\
\widetilde{\mathbf{p}}_{1,0}(u) \sim 1+\mathrm{O}(u), & \widetilde{\mathbf{p}}_{2,0}(u) \sim u+\mathrm{O}\left(u^{2}\right) .
\end{aligned}
$$

Baxter equations to solve (state quantum numbers are specified by LO Baxter polynomial $\left.Q(u) \sim \nu_{1}^{[1]}(u)\right)$:

$$
\begin{aligned}
& \frac{\nu_{1}^{[3]}}{\mathbf{P}_{1}^{[1]}}-\frac{\nu_{1}^{[-1]}}{\mathbf{P}_{1}^{[-1]}}-\sigma\left(\frac{\mathbf{P}_{0}^{[1]}}{\mathbf{P}_{1}^{[1]}}-\frac{\mathbf{P}_{0}^{[-1]}}{\mathbf{P}_{1}^{[-1]}}\right) \nu_{1}^{[1]}=-\sigma\left(\frac{\mathbf{P}_{2}^{[1]}}{\mathbf{P}_{1}^{[1]}}-\frac{\mathbf{P}_{2}^{[-1]}}{\mathbf{P}_{1}^{[-1]}}\right) \nu_{2}^{[1]} . \\
& \frac{\nu_{2}^{[3]}}{\mathbf{P}_{1}^{[1]}}-\frac{\nu_{2}^{[-1]}}{\mathbf{P}_{1}^{[-1]}}+\sigma\left(\frac{\mathbf{P}_{0}^{[1]}}{\mathbf{P}_{1}^{[1]}}-\frac{\mathbf{P}_{0}^{[-1]}}{\mathbf{P}_{1}^{[-1]}}\right) \nu_{2}^{[1]}=\sigma\left(\frac{\mathbf{P}_{3}^{[1]}}{\mathbf{P}_{1}^{[1]}}-\frac{\mathbf{P}_{3}^{[-1]}}{\mathbf{P}_{1}^{[-1]}}\right) \nu_{1}^{[1]} .
\end{aligned}
$$

where

$$
\sigma \equiv e^{i \mathcal{P}}=Q^{[1]}(0) / Q^{[-1]}(0), \quad Q \text { is LO Baxter polynomial }
$$

Marboe, Volin, 2014; Anselmetti, Bombardelli, Cavaglia, Tateo, 2015

ABJM theory and its QSC: solution for sl(2) sector

Coefficients are fixed from equations:

$$
\left.\begin{array}{l}
\nu_{a}(u)+\widetilde{\nu}_{a}(u)=\nu_{a}(u)+\sigma \nu_{a}^{[2]}(u) \\
\frac{\nu_{a}(u)-\widetilde{\nu}_{a}(u)}{\sqrt{u^{2}-4 h^{2}}}=\frac{\nu_{a}(u)-\sigma \nu_{a}^{[2]}(u)}{\sqrt{u^{2}-4 h^{2}}}
\end{array}\right\} \quad \text { free of cuts on real axis } \quad \begin{aligned}
& \left(\nu_{1}+\sigma \nu_{1}^{[2]}\right)\left(\mathbf{p}_{0}-(h x)^{L}\right)=\mathbf{p}_{2}\left(\nu_{2}+\sigma \nu_{2}^{[2]}\right)-\mathbf{p}_{1}\left(\nu_{3}+\sigma \nu_{3}^{[2]}\right), \\
& \left(\nu_{2}+\sigma \nu_{2}^{[2]}\right)\left(\mathbf{p}_{0}+(h x)^{L}\right)=\mathbf{p}_{3}\left(\nu_{1}+\sigma \nu_{1}^{[2]}\right)+\mathbf{p}_{1}\left(\nu_{4}+\sigma \nu_{4}^{[2]}\right) . \\
& \sigma \nu_{1}^{[2]}=\mathbf{P}_{0} \nu_{1}-\mathbf{P}_{2} \nu_{2}+\mathbf{P}_{1} \nu_{3}, \quad \widetilde{\mathbf{P}}_{2}-\mathbf{P}_{2}=\sigma\left(\nu_{3} \nu_{1}^{[2]}-\nu_{1} \nu_{3}^{[2]}\right), \\
& \sigma \nu_{2}^{[2]}=-\mathbf{P}_{0} \nu_{2}+\mathbf{P}_{3} \nu_{1}+\mathbf{P}_{1} \nu_{4}, \quad \widetilde{\mathbf{P}}_{1}-\mathbf{P}_{1}=\sigma\left(\nu_{2} \nu_{1}^{[2]}-\nu_{1} \nu_{2}^{[2]}\right) .
\end{aligned}
$$

Marboe, Volin, 2014; Anselmetti, Bombardelli, Cavaglia, Tateo, 2015

ABJM theory and its QSC: solution for sl(2) sector

The most complex part is the solution at each perturbative order k of two Baxter equations, which for $L=1$ take the form:

$$
\begin{gathered}
\mathcal{B}_{1}^{S}\left[q_{1}\right] \equiv(u+i / 2) q_{1}^{(k)[2]}(u)-i(2 S+1) q_{1}^{(k)}(u)-(u-i / 2) q_{1}^{(k)[-2]}(u)=V_{1}^{(k)}, \\
\mathcal{B}_{2}^{S}\left[q_{2}\right] \equiv(u+i / 2) q_{2}^{(k)[2]}(u)+i(2 S+1) q_{2}^{(k)}(u)-(u-i / 2) q_{2}^{(k)[-2]}(u)=V_{2}^{(k)} . \\
q_{1}^{(k)}(u)=\nu_{1}^{(k)[1]}(u), \quad q_{2}^{(k)}(u)=\nu_{2}^{(k)[1]}(u)
\end{gathered}
$$

For fixed integer spins the solution is expressed in terms of polynomials, rational functions and generalized Hurwitz functions

$$
\eta_{a_{1}, a_{2}, \ldots, a_{k}}(u)=\sum_{n_{k}>n_{k-1}>\cdots>n_{1} \geq 0} \prod_{i=1}^{k} \frac{\left(\operatorname{sgn}\left(a_{i}\right)\right)^{n_{i}-n_{i-1}-1}}{\left(u+i n_{i}\right)^{\left|a_{i}\right|}},
$$

Marboe, Volin, 2014; Anselmetti, Bombardelli, Cavaglia, Tateo, 2015

ABJM theory and its QSC: solution for s/(2) sector

Solution of Baxter equations could be written as:

$$
\begin{aligned}
& q_{1}^{(k)}=\mathcal{F}_{1}^{S}\left[V_{1}^{(k)}\right]+Q_{S} \Phi_{1}^{p e r,(k)}+\mathcal{Z}_{S} \Phi_{1}^{a n t i,(k)} \\
& q_{2}^{(k)}=\mathcal{F}_{2}^{S}\left[V_{2}^{(k)}\right]+Q_{S} \Phi_{2}^{a n t i,(k)}+\mathcal{Z}_{S} \Phi_{2}^{p e r,(k)}
\end{aligned}
$$

where $\left(\nabla_{ \pm} \Psi_{ \pm} g=g, \nabla_{ \pm} g=g \mp g^{[2]}\right)$:
$\mathcal{F}_{1}^{s}[f]=-Q_{S} \Psi_{+}\left(\frac{1}{u+i / 2} \Psi_{-}\left(Q_{S}(-1)^{s} f\right)^{[2]}\right)-Q_{S} \Psi_{+}\left(P_{S}(-1)^{s} f\right)+P_{S} \Psi_{-}\left(Q_{S}(-1)^{s} f\right)$
$\mathcal{F}_{2}^{s}[f]=-Q_{S} \Psi_{-}\left(\frac{1}{u+i / 2} \Psi_{+}\left(Q_{S}(-1)^{s} f\right)^{[2]}\right)+Q_{S} \Psi_{-}\left(P_{S}(-1)^{s} f\right)-P_{S} \Psi_{+}\left(Q_{S}(-1)^{s} f\right)$
and

$$
\begin{gathered}
P_{S}(u)=i \sum_{k=0}^{\left[\frac{S-1}{2}\right]} \frac{1}{S-k} Q_{S-1-2 k}(u) \\
Q_{S}(u)=\frac{(-1)^{S} \Gamma\left(\frac{1}{2}+i u\right)}{S!\Gamma\left(\frac{1}{2}+i u-S\right)} 2 F_{1}\left(-S, \frac{1}{2}+i u ; \frac{1}{2}+i u-S ;-1\right), \\
\mathcal{Z}_{S}(u)=i \sigma \sum_{k=0}^{\left\lfloor\frac{s-1}{2}\right\rfloor} \frac{1}{S-k} Q_{S-1-2 k}(u)+\sigma \eta_{-1}(u+i / 2) Q_{S}(u)
\end{gathered}
$$

ABJM theory and its QSC: solution for s/(2) sector

To obtain the solution for arbitrary integer spins we will need to introduce new class of functions: sums of Baxter polynomials

$$
\begin{aligned}
\left\langle Q(u) \mid w_{1}(\bullet), w_{2}(\bullet), \ldots, w_{n}(\bullet)\right\rangle & =\sum_{S \geq j_{\mathbf{1}}>j_{2} \ldots>j_{n}>0} Q_{S-j_{\mathbf{1}}}(u) \prod_{k} w_{k}\left(j_{k}\right), \\
\langle Q(u) \mid\rangle & =Q_{S}(u)
\end{aligned}
$$

For example

$$
\left\langle Q(u) \left\lvert\, \frac{(-1)^{\bullet}}{(\bullet)^{3}}\right., \frac{1}{(S+1-\bullet)^{2}}\right\rangle=\sum_{S \geq j_{1}>j_{2}>0} Q_{S-j_{1}}(u) \frac{(-1)^{j_{1}}}{j_{1}^{3}} \frac{1}{\left(S+1-j_{2}\right)^{2}}
$$

The weights are not arbitrary, but take the form

$$
\begin{array}{rlrl}
\frac{1}{\bullet n} & =n_{+}(\bullet), & \frac{(-)^{\bullet}}{\bullet \bullet}=n_{-}(\bullet) \\
\frac{1}{(S+1-\bullet)^{n}} & =\bar{n}_{+}(\bullet), & & \frac{(-)^{\bullet}}{(S+1-\bullet)^{n}}=\bar{n}_{-}(\bullet) \\
\frac{1}{(2 S+1-\bullet)^{n}} & =\hat{n}_{+}(\bullet), & & \frac{(-)^{\bullet}}{(2 S+1-\bullet)^{n}}=\hat{n}_{-}(\bullet) .
\end{array}
$$

ABJM theory and its QSC: solution for sl(2) sector

Moreover, the introduced sums have a number of nice properties under shifts ($a= \pm 1$):

$$
\begin{gathered}
Q_{S}^{[2]]}=Q_{S}+2 \sum_{k=1}^{S} a^{k} Q_{S-k}=Q_{S}+2\left\langle Q \mid 0_{a}\right\rangle \\
\langle Q \mid w, W\rangle^{[2 a]}=\langle Q \mid w, W\rangle+2\left\langle Q \mid 0_{a}, 0_{a} \cdot w, W\right\rangle .
\end{gathered}
$$

and partial fractions:

$$
\begin{gathered}
\frac{Q_{s}}{u+a a^{\frac{i}{2}}}=\frac{(-a)^{s}}{u+a \frac{i}{2}}+2 i a\left\langle Q \mid 0_{a}, \overline{1}_{-}\right\rangle+2 i a\left\langle Q \mid \overline{1}_{-a}\right\rangle \\
\frac{\langle Q \mid w, W\rangle}{u+a \frac{i}{2}}=\frac{(-a)^{s}}{u+a \frac{i}{2}}\left\langle 0_{-a} \cdot w, W\right\rangle+2 i a\left\langle Q \mid 0_{a}, \overline{1}_{-}, 0_{-a} \cdot w, W\right\rangle \\
\quad+2 i a\left\langle Q \mid \overline{1}_{-a}, 0_{-a} \cdot w, W\right\rangle .
\end{gathered}
$$

In addition this class of functions is closed under differentiation.

ABJM theory and its QSC: solution for sl(2) sector

To find particular solutions for arbitrary spins we introduce the idea of dictionary - find recursively images $\mathcal{F}_{i}^{S}[f]$ for canonical inhomogeneities f. Consider for example \mathcal{F}_{1}^{S} image for $\langle Q(u) \mid w, W\rangle$:

$$
\begin{aligned}
\mathcal{B}_{1}^{S}[\langle Q \mid w, W\rangle] & =\sum_{j=1}^{s} \mathcal{B}_{1}^{S}\left[Q_{S-j}\right] w(j)|W\rangle_{j} \\
& =-2 i \sum_{j=1}^{s} Q_{S-j} j w(j)|W\rangle_{j}=-2 i\left\langle Q \mid(-1)_{+} \cdot w, w\right\rangle
\end{aligned}
$$

Now, replacing $w \rightarrow 1_{+} \cdot w$ and taking \mathcal{F}_{1}^{S} from both side and using $\mathcal{F}_{1}^{S}\left[\mathcal{B}_{1}^{S}[f]\right]=f$ we get

$$
\mathcal{F}_{1}^{S}[\langle Q \mid w, W\rangle]=\frac{i}{2}\left\langle Q \mid 1_{+} \cdot w, W\right\rangle
$$

This way we may construct all required images for arbitrary order of perturbation theory and stay all the time within the introduced class of functions.

Lee, AO, 2019

ABJM theory and its QSC: solution for sl(2) sector

At four loop order we obtained

$$
\gamma(S)=\gamma^{(0)}(S) h^{2}+\gamma^{(1)}(S) h^{4}+\ldots
$$

where

$$
\begin{gathered}
\gamma^{(0)}(S)=4\left(\bar{H}_{1}+\bar{H}_{-1}-2 \bar{H}_{i}\right) \\
\gamma^{(1)}(S)=16\left\{3 \bar{H}_{-2,-1}-2 \bar{H}_{-2, i}-\bar{H}_{-2,1}-\bar{H}_{-1,-2}+2 \bar{H}_{-1,2 i}-\bar{H}_{-1,2}-6 \bar{H}_{i,-2}\right. \\
+12 \bar{H}_{i, 2 i}-6 \bar{H}_{i, 2}-6 \bar{H}_{2 i,-1}+4 \bar{H}_{2 i, i}+2 \bar{H}_{2 i, 1}-\bar{H}_{1,-2}+2 \bar{H}_{1,2 i}-\bar{H}_{1,2}+3 \bar{H}_{2,-1} \\
-2 \bar{H}_{2, i}-\bar{H}_{2,1}+2 \bar{H}_{-1, i,-1}-2 \bar{H}_{-1, i, 1}+8 \bar{H}_{i,-1,-1}-12 \bar{H}_{i,-1, i}+4 \bar{H}_{i,-1,1}-16 \bar{H}_{i, i,-1} \\
\left.+16 \bar{H}_{i, i, i}+4 \bar{H}_{i, 1,-1}-4 \bar{H}_{i, 1, i}+2 \bar{H}_{1, i,-1}-2 \bar{H}_{1, i, 1}\right\}+8\left(H_{-1}-H_{1}\right) \zeta_{2}
\end{gathered}
$$

and we introduced new sums

$$
\begin{equation*}
H_{a, b, \ldots}(S)=\sum_{k=1}^{S} \frac{\Re\left[(a /|a|)^{k}\right]}{k^{|a|}} H_{b, \ldots}(k) \quad H_{a, \ldots}=H_{a, \ldots}(S) \quad \bar{H}_{a, \ldots}=H_{a, .} \tag{2S}
\end{equation*}
$$

Lee, AO, 2017

ABJM theory and its QSC: solution for s/(2) sector

At six loops for fixed spin values we get

$$
\begin{aligned}
\gamma^{(2)}(5) & =\frac{16928 \zeta(3)}{25}-\frac{749207584}{1771875}+\frac{92912 \pi^{2}}{1575}+\frac{322 \pi^{4}}{75}-\frac{33856}{225} \pi^{2} \log (2) \\
\gamma^{(2)}(10) & =\frac{10143008 \zeta(3)}{11025}-\frac{3035620455261599584}{143248910889459375}+\frac{4641541857896 \pi^{2}}{173241313245} \\
& +\frac{1126 \pi^{4}}{225}-\frac{20286016 \pi^{2} \log (2)}{99225} \\
\gamma^{(2)}(15) & =\frac{265411493888 \zeta(3)}{225450225}-\frac{3624275079466514140265279547904}{66590160573335764008440671875} \\
& +\frac{3593709256322943648256 \pi^{2}}{98455081120952180625}+\frac{182144 \pi^{4}}{32175}-\frac{530822987776 \pi^{2} \log (2)}{2029052025} \\
\gamma^{(2)}(20) & =\frac{30827191890924032 \zeta(3)}{23520996524025}+\frac{1948857047511423184964102975203491228085647584}{7482144284371332845393775248854242377015625} \\
& +\frac{897376012402828916790600935968 \pi^{2}}{106034967193798706401189726875}+\frac{62075752 \pi^{4}}{10392525}-\frac{61654383781848064 \pi^{2} \log (2)}{211688968716225}
\end{aligned}
$$

and the results for arbitrary integer spins can be found on arXiv
Lee, AO, 2019

$\mathcal{N}=4$ SYM theory and its QSC

$\mathcal{N}=4$ SYM is $\mathcal{N}=4$ superconformal Yang-Mills theory with gauge group $S U(N)$ on $\mathbb{R}^{1,3}$. The field content is given by gauge field A_{μ}, six scalars $\phi_{a b}$ in antisymmetric representation of $S U(4)_{R}$ together with four chiral ψ_{α}^{a} fermions in fundamental and four anti-chiral $\bar{\psi}_{\dot{\alpha} a}$ fermions in anti-fundamental representation of $S U(4)_{R}$.

In planar limit $N \rightarrow \infty, \lambda \equiv g^{2} N=$ fixed it is dual to superstring theory on $A d S_{5} \times S_{5}$

We will be interested in anomalous dimensions of operators

$$
\operatorname{tr}\left[D_{+}^{S} \phi_{34}^{L}\right]
$$

with Dynkin labels $[L+S, S, S ; 0, L, 0]$ under $\operatorname{PSU}(2,2 \mid 4)$

Brink, Scherk, Schwarz, 1977

$\mathcal{N}=4$ SYM theory and its QSC: $\mathbf{P} \mu$-system

P-functions in this case carry indexes corresponding to isometry group of $S_{5}\left(S U(4)_{R} R\right.$-symmetry of $\left.\mathcal{N}=4 S Y M\right)$ and Riemann-Hilbert problem for $s l(2)$-sector takes the form $(a, b=1, \ldots, 4)$:

$$
\begin{aligned}
\mu_{a b}-\tilde{\mu}_{a b} & =\tilde{\mathbf{P}}_{a} \mathbf{P}_{b}-\tilde{\mathbf{P}}_{b} \mathbf{P}_{a}, \\
\tilde{\mathbf{P}}_{a} & =(\mu \chi)_{a}^{b} \mathbf{P}_{b}, \\
\tilde{\mu}_{a b} & =\mu_{a b}^{[2]},
\end{aligned}
$$

where $\mu_{a b}$ is antisymmetric matrix, $(\mu \chi)_{a}{ }^{b} \equiv \mu_{a c} \chi^{c b}$ and

$$
\chi^{a b}=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & +1 & 0 \\
0 & -1 & 0 & 0 \\
+1 & 0 & 0 & 0
\end{array}\right)
$$

Gromov, Kazakov, Leurent, Volin, 2013

$\mathcal{N}=4$ SYM theory and its QSC: $\mathbf{P} \mu$-system

Boundary conditions in $s /(2)$ sector (large u):

$$
\begin{aligned}
& \mathbf{P}_{1} \simeq A_{1} u^{-\frac{L+2}{2}}, \mathbf{P}_{2} \simeq A_{2} u^{-\frac{L}{2}}, \mathbf{P}_{3} \simeq A_{3} u^{\frac{L-2}{2}}, \mathbf{P}_{4} \simeq A_{4} u^{\frac{L}{2}} \\
& \mu_{1} \sim u^{\Delta-L}, \mu_{2} \sim u^{\Delta-1}, \mu_{3} \sim u^{\Delta}, \mu_{4} \sim u^{\Delta+L}, \mu_{5} \sim u^{\Delta+L}
\end{aligned}
$$

with

$$
\begin{aligned}
& A_{1} A_{4}=\frac{\left[(L-S+2)^{2}-\Delta^{2}\right]\left[(L+S)^{2}-\Delta^{2}\right]}{16 i L(L+1)}, \\
& A_{2} A_{3}=\frac{\left[(L+S-2)^{2}-\Delta^{2}\right]\left[(L-S)^{2}-\Delta^{2}\right]}{16 i L(L-1)} .
\end{aligned}
$$

$L \in \mathbb{N}^{+}$(twist), $S \in \mathbb{N}^{+}$(spin) and Δ is the conformal dimension. The anomalous dimension γ is given by $\gamma=\triangle-L-S$.

Gromov, Kazakov, Leurent, Volin, 2013

$\mathcal{N}=4$ SYM theory and its QSC: solution for $s /(2)$ sector

The solution in this case goes similar to ABJM case considered before. In particular we introduce similar ansatz for \mathbf{P}-functions and reduce the perturbative solution of Riemann-Hilbert problem to iterative solution of two inhomogeneous second-order Baxter and one inhomogeneous first-order difference equations. The coefficients in the ansatz for \mathbf{P}-functions are then determined from the similar constraint equations.

The two Baxter equations are both of the form $B_{S}[q]=\left(u+\frac{i}{2}\right)^{2} q^{[2]}(u)+\left(u-\frac{i}{2}\right)^{2} q^{[-2]}(u)-\left(2 u^{2}-\frac{1}{2}-S(S+1)\right) q(u)=V(u)$
while the first-order difference equation is given by

$$
\nabla r(u)=r(u)-r(u+i)=V(u) .
$$

$\mathcal{N}=4$ SYM theory and its QSC: solution for s/(2) sector

For this model and twist 2 operators we may also introduce class of functions - sums of Baxter polynomials and find their rules under shifts, multiplication by simple fractions, differentiation and so on. The corresponding analysis is however more involved as leading order Baxter polynomials in this case are more complex functions

$$
Q_{S}(u)={ }_{3} F_{2}\left(-S, S+1, \frac{1}{2}-i u ; 1,1 ; 1\right)
$$

Within this class of functions we may recursively determine all the required images both for second-order Baxter and first-order difference equations needed for finding corresponding particular solutions for in principle arbitrary prescribed order in perturbation theory. As an example we re-derived known four-loop anomalous dimensions of twist 2 operators. The results can be found on arXiv. Interesting fact is that the weights in sums of Baxter polynomials are the same as for ABJM model, where we have seen the appearance of new harmonic sums decorated by fourth root of unity. Recently, the latter also appeared in the reconstruction of NNNLO eigenvalue of BFKL kernel performed by Velizhanin.

Conclusion and future directions

- We have introduced new class of special functions relevant to the solution of long-range spin-chains and studied their properties
- We have also performed similar analysis for twist 2 operators within ABJM model.
- Obtained results gives us hope that similar techniques will also work for higher twists and other models.
- An extension of computational techniques to twisted ABJM and $\mathcal{N}=4$ theories
- Develop techniques for strong coupling and large spin expansion

Thank you for your attention!

