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The Calabi-Yau manifold X is chosen to be a torus-fibered threefold with fundamental
group m1(X) = Za x Za. More specifically, the Calabi-Yau threefold X is the fiber
product of two rationally elliptic dPs surfaces, that is, a self-mirror Schoen threefold
quotiented with respect to a freely acting Zq x Zs isometry. Its Hodge data =
h's' = R'2 = 3, so there are three Kihler and three complex structure moduli.
The Kahler moduli are denoted by o', ¢*, a”.

The Observable Sector Bundile:
On the observable orbifold plane, the vector bundle V') on X is chosen to be a specific
holomorphic bundle with structure group SU(4) < Es. It can be shown to be

slope-stable and, hence, satisfy the HYM equations in the region of Kahler
moduli space given by
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Figure 1: The observable sector stability region in the Kahler cone.



This SU(4) bundle breaks

Eg — Spin(10)
However, to procesd further, one must break this Spin(10) “grand unifled” group
down to the gauge group of the MSSM. This = accomplished by turning on two flat
Wilson lines, each associated with a different Z; factor of the Zs; x Z; holonomy of X.
Doing this preserves the N = 1 supersymmetry of the effective theory, but breaks the
observable gauge group down to

Spin(10) - SU@)e x SU(2) xU(l)y x U(1)p_1,

Low Energy Spectrum:
The particle spectrum of the B-L MSSM is EXACTLY that of the MSSM- three families of quarks

and leptons, including three nght-handed neutrino chiral supermultiplets - one per
family - and exactly one pair of Higgs-Higgs conjugate chiral superflelds. There are no
vector-like pairs of particles and no exotics of any kind.

The Hidden Sector Bundle:
Generically, the hidden sector bundle can have the form of a Whitney sum
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where Vi is a slope-stable, non-abelian bundle and each L., r = 1,... K, 18 a
holomorphic ine bundle with structure group U/(1).



However, in this talk, we will simply choose this bundle
to be defined by a single holomorphic line bundle

L, in such a way that its U(1) structure group embeds into Ez. A line bundle L
1s associated with a divisor of X and = conventionally expressed as

L=0x(' 2P,
where the [* are integers satisfying the condition

(' +P)mod3=0.

This additional constraint 1s imposed mn order for these bundles to arse from s x Za
equivariant hne bundles on the covening space of X. The structure group of L is
U(1). However, there are many distinet ways in which this U(1) subgroup can be
embedded into the hidden-sectar Ex group. The ehoice of embedding determines two

unpartant properties of the effective low-energy theary. First, a specific embedding
will define a commutant subgroup of Eg, which appears as the symmetry group for

the four-dimensional effective theory, Second, the explicit chotee of embedding wall
determine a real numerical constant
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where Q = the generator of the U(1) factor embedded in the 248 adjoint repeesentation
of the hiddea sector Eg, and the trace tr inclodes a factor of 1/3). This coefficient will
enter severnd of the consistency conditions, such as the anomaly cancellation equation,
required Sor an scceptable vacuum solution.

Five-Branes:

In nddition to the holomarphic vector bundles oa the observable and hiddea ochifold
planes, the bulk space between these planes can contain five-branes wrapped on two-
cycdes 0¥ n = 1,...,N in X. Cobomalogically, ench such fivebeane is described
by the (2, 2)-form Poincaré dual to Gy, which we denote by W™, Note that to
preserve N - | supersymmnetry in the four-dimensianal theary, these curves must be
holomorphie and, benee, each W' is an effective cdass. In this paper, we consider
only n single five-brane. We denote its location in the balk space by 21,
where 21 € [0, 1]. When convenient, we will re-express this five-brane location

in terms of the parameter A = 2y — 3, where A € [—¢, 4]

Having expressed the constituents of the observable, hidden and orbifold
sectors of the B-L MSSM vacuum, we now must solve all vacuum,
dimensional reduction and physical constraints on the theory.



The Vacuum Constraints:

There are three fundamental constramts that aoy consastent wewuzn state of the B - L

1) The SU(4) Slope Stability Constraint
The Kahler moduli must satisfy

—tal)? — 2 2
(n)cal&:l:a; (a )9) or

v 1% 3 1,2 dmi\2 1 2 242
(\/;a'-:aQ-:Za’ and 2(;&:,_:(225)—-:03-: (a)sa]&l_:a;(d)).

(al-ca,s §al and as-c

2) The Anomaly Cancellation Constraint
Wi = (5,5, —4)|, +adgel/* =0 i-1,23

3) Positive Unified Gauge Coupling Constraint

, R
#>0 = degea’a’a” — By (—(30" + 30 +4a”)
+2(a' +a%)— (3 —A)a'Wy) =0,
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+2a' +a”) — (F+2) % W) = 0



Solution to the Vacuum Constraints:

The solution to the SU(4) slope stability constraint 1) was given above.

However, the anomaly conditions 2) and 3) require one to choose the line bundle
L - Ox(I',F*,I") and to compute its embedding coefficien @ = > trg, Q7.

In this talk, as a simple example, we will choose

L - Oyx(2,1,3)

There are many possible embeddings of L into E5 .
Here, for specificity, we choose the following. Recall

SU(2) x E, ¢ E

15 a maamal subgroup. With respect to SU(2) x E, the 248 roprescnitaton of Eyg
decomponcs as

248 —+ (1,133) ©(2,56) © (3, 1) -

Now choose the generator of the U(l) structure group of L in the fundamental
represcatation of SU(2) to be (1, —1). It follows that under SU(2) — U(1)

4d-15-1,
and, hence, under U(1) x By

248 5 (0,133) & ((1,56) @ (-1,56)) & ((2,D) & (0, 1) @ (-2,1)).



It follows from the above expression that the embedding coefficient is
a~ L
Clearly, the low energy gauge group is given by
H« Ey xU(1),
where the socond factor ¥ an “anomalows™ [F(1).

We find that all three Vacuum Constraints are solved within the region of
Kahler moduli space given by

Figure 2: The regpos of Kahler moduli space where the SU4) dope-stalalily condtions,
the ancealy canodinton corstrunt, and the postive squared peape couplog conetrants
with A = 049 arc mrultancomly mtided i ssity geope, restricted to 0 < o' < 10 ke
1= 1,23 The asmousts to the intersection of Fygunes 2 and X



The Dimensional Reduction Constraint:
The fifth-dimensional length must be larger than the CY length. This implies
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where V = %dijkaiajak .
The Physical Constraint:

In the “simultaneous” Wilson line scenario, the “unified” SO(10) gauge
coupling parameter ¢, in the observable sector should satisfy the constraint

-' ‘| — . - 16 4
\ T > a5 (M) = 3.15 x 10" CeV

Solving all Vacuum, Dimensional Reduction and Physical constraints
simultaneously has the solution space

b

Figure 3: The repmcn of Kahler mo&ala wpmcx where the SUL) shopostability con-

diticom, the meomaly cancdistcn constraast and the poative squared paupe cosplng
a:-u—tfmmi'gnm4m-hﬁd in sddibon o the ditnessoonal reduction sed the

phecmenalopod corsd rurnts.




Having solved all fundamental constraints required in the B-L MSSM,
we must now discuss the slope stability and N=1 supersymmetry of the
hidden sector of the vacuum.

We find that ¥

L w L~ will be polystable if and only if the Kahler moduli satisfy
o'y + H{a®)? + sa'a® 4 4a’e® 4 23'a’ - 1335 -0
That is

Figure 4: The mueface in Kahler moduli space where the pemas-ome corrected dope of

the hidden smoctor Ene bundle L« Ox (2 1,3) vanishex

Intersecting the region of Figure 3 satisfying all required constraints and
the region of Figure 4 required for slope-stability gives



Figure 5: The musgmnia repmon shows Lhe intemsection between the brows ramon
of Figure 3 and the two-dimemsecsal cysn surfsce = Figeee 4.

The “magenta” region solves all required vacuum, dimensional and physical
constraints with the hidden sector rank 2 bundle satisfying the Hermitian

Yang-Mills equations and being N=1 supersymmetric!



Having found a hidden sector vector bundle satisfying all mathematical
and physical requirements we can now compute its low energy spectrum.

Low Energy Spectrum: V. Braun

Y-H. He

Using the Euler Characteristic we find that
B. Ovrut

U1) x By Cohomology Index y

(0,133) H'(X,0x) 0
(01 H'(X,0x) o
(—1,86) H'(X,L) s
(1,66) HYX,L-Y) s
(-21) H'(X,L?) s
(z1) HY(X,L7) —5s

and, hence, that the [/(1) x £; hidden sector masshess spectrum for L~ Ox(2,1,3) =

1x(0,133) +1 x(0,1) +8x(1,56) + 58 x(2,1)

cocrespoading to cae voctor supermultiplet trassforming in the adjoint repeeentation of
E;, cae U(1) adjoint repeesentation vector supermultiplet, cight chiral supermultiplots
transforming as (1,56) and 58 chiral supermultiplets transforming s (2, 1).




N=1 SUSY Breaking via Gaugino Condensation:

In the previous section, we reviewed the constraints imposed on a heterotic M-theory
vacuum whose hidden sector is defined by a single line bundle L with its U(1) structure
group embedded into the SU(2) subgroup of SU(2) x E; C Eg via the induced vector
bundle L& L. We demanded that d = 4, N = 1 supersymmetry be exactly preserved.

In this section, however, we will analyze how spontaneous supersymmetry breaking
in four dimensions can occur due to gaugino condensation of E% in the hidden sector.

Gaugino Condensation:

As is well known | if the E; gauge group of the hidden sector becomes
strongly coupled below the compactification scale, then the associated gauginos con-
dense and produce an effective superpotential for the relevant geometric moduli of the
theory — in our case, the dilaton S and the complexified Kihler moduli 7%, i = 1, 2, 3.
The form of this gaugino condensate superpotential is given by

W=(MU>38XP(— il f2>
bracur

where for any line bundle L embedded as above
/

€ A :
fo=5+2(=(2,2,0) — digel I*)T*



Note that
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where 6'5 is the strong coupling parameter /1?{3. As above (M) ~ 3.15 x 10'¢ CeV.

The beta function coefficient b;, depends explicitly on the low energy spectrum of the hidden

sector bundle L.

The Condensation Scale:

For an arbitrary momentum p below the unification scale, the renormalization
group equation for the hidden sector gauge parameter a(?) is given by

. 4 b (M)
@) ()1 — (a1 _ 2L, U

When b; > 0 condensation can, in principle, occur.

In this case, roughly speaking, the hidden sector E; gauge theory becomes strongly
coupled and, hence, its gauginos condense, at a momentum p =~ A where a(?)(A)~!
can be well approximated by 0. It then follows from the above that

. b (M)
(2)y-1 _ “L {




The condensation scale A can then be expressed as

TV AR ) :bhmc—@—y
= (My)e "L = (My)e *r Refifeu

Note that the condensate superpotential above can now be expressed as

W = Ade” bL“GUT Im f2

The supersymmetry breaking in the S and 7" moduli is then gravitationally mediated
to the observable matter sector. The scale of SUSY breaking in the low-energy
observable matter sector is then of order
A3

2
Mp

243
Mgysgy ~ "”4A .

Our Specific L = 0x(2,1,3) Example:

In this case (ay) and

26.46
—vatat Lo 03 L1 A0t + 1702
Refi=V+2a —a +2a+2(2 A)"(9a" + 17a°)

20 , 25

1
Refo=V—a' - Zla? —2a* + 5(§ + A)*(9a! + 17a2)
where A - 049 and

V = ((al)2a2+al(a2)2+6a1 2a3)
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For the low energy spectrum given above, we find that
by =6 (>0)

3
over the the viable “magenta” region of Kahler moduli space
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Figure 8: Variation of the mass scale msusy ~ 8TA®/M? of the soft breaking terms

across the “viable” region of Kahler moduli space space that satisfies all constraints
for the line bundle L = Ox(2,1,3). The numbers indicate the my,,, value corresponding

to each contour. mg,sy scales below the EW scale ~ 102 GeV become unphysically small and,

therefore, are not displayed.



