From toy models to beta-functions in arbitrary renormalizable QFT

Andrey Pikelner

BLTP JINR

in collaboration with Alexander Bednyakov

based on PRL 127 (2021) 4

Well known beta-functions use cases

More on the vacuum stability in the SM

Going beyond SM beta functions

• At some scale if BSM scenario realizes we need precise RG evolution comparable with SM precision level

Summary of the general model results

• 2-loop results by Mahacek and Vaughn [Machacek, Vaughn'83,83,84]

 $\beta^{g}(g, Y_{ij}^{a}, \lambda_{abcd}), \quad \beta^{y}_{a,ij}(g, Y_{ij}^{a}, \lambda_{abcd}), \quad \beta^{\lambda}(g, Y_{ij}^{a}, \lambda_{abcd})$

• 3-loop gauge coupling, simple group [Pickering, Gracey, Jones'01]

 $\beta^{g}(g, Y_{ij}^{a}, \lambda_{abcd})$

• 3-loop gauge, non-simple group

[Mihaila'13][Poole, Thomsen'19]

$$\beta_I^g(g_I, Y_{ij}^a, \lambda_{abcd})$$

6-loop pure scalar theory

[Bednyakov, AP'21]

$$\beta^{\lambda}_{abcd}(\lambda_{abcd})$$

Standard RG calculations toolchain

- Implement model, usually by hand
- Generate diagrams with DIANA
- Make algebraic manipulations with FORM
- Perform single scale integrals reduction
 - Massless propagators MINCER and FORCER
 - Fully massive tadpoles MATAD and FMFT
 - Laporta algorithm implementations
- Renormalization of all calculated Green functions
- RG functions derivation from renormalization constants

Dreams about general model codes

- From Lagrangian to Feynman rules for specific model
 - LanHEP
 - FeynRules
- · From model to amplitudes and observables
 - FeynArts
 - FeynCalc, FormCalc
 - CompHEP,CalcHEP
 - GoSam MadGraph5_aMC@NLO
- · General model RG equations from the simple model description

SARAH 4	[Staub'13]		
PyR@TE 3	[Sartore,Schienbein'20]		
ARGES	[Litim,Steudtner'20]		
RGBeta	[Thomsen'21]		

General model ansatz idea

• TS in results of Machacek and Vaughn can be generated w/o any loop integrations and renormalization

$$\begin{split} \beta_{g}^{2-\text{loop}} &= -g^{3} \left(A_{1} \cdot C(G) + B_{1} \cdot T(R) + C_{1} \cdot T(S) \right) \\ &- g^{3} \left(g^{2}A_{2} \cdot C(G)^{2} + g^{2}B_{2} \cdot C(G)T(R) + g^{2}C_{2} \cdot C(G)T(S) \right. \\ &+ g^{2}D_{2} \cdot \frac{TrC(S)^{2}}{N_{A}} + E_{2} \cdot \frac{TrC(R)\bar{Y}_{a}Y_{a}}{N_{A}} + g^{2}F_{2} \cdot \frac{TrC(R)^{2}}{N_{A}} \right) \end{split}$$

- To construct TS no need for loop integrals and renormalization
- Coefficients {*A*, *B*, ... } rational numbers and MZV @ high orders

Known applications:

- TS ansatz for general Gauge-Yukawa model (4-3-2) [Poole, Thomsen'19]
- TS ansatz and CS fixing from existing models for scalar [Steudtner'20]
- And general Yukawa theory

RGBeta session

QCD I-loop example

```
(* Define gauge group *)
AddGaugeGroup[g, SUc, SU[Nc]];
(* Fermions in fundamental representation *)
AddFermion[qL, GaugeRep -> {SUc[fund]}];
AddFermion[qR, GaugeRep -> {Bar@SUc[fund]}];
(* 1-loop beta-function *)
BetaTerm[g, 1]
```

Some features:

- Advanced tool to construct model specific tensor structures T_i
- Collection of model independent coefficients C_i

	Gauge	Yukawa	Lambda
ΤS	4	3	2
CS	3 →4	2→ <mark>3</mark>	2

All included TS clasified and available from

[Poole, Thomsen'19]

Fixing coefficiets from WCC

Due to the Weyl Consistency Conditions(WCC) and postulated *a*-function we have relations between different terms of β_i [Osborn'91]

WCC provides us with relations connecting different β_i [Antipin et al.'13]

For example 3-2-1 relations in the SM with $a_i = \{a_1, a_2, a_3, a_t, a_\lambda\}$:

$$\begin{split} \beta_1 &= 2a_1^2 \bigg\{ \dots + \left(\frac{3}{4} + \frac{n_G}{2}\right) a_2 + \frac{22n_G}{9} a_3 + \dots + a_t \bigg[-\frac{17}{12} - \dots \bigg] + a_\lambda \bigg(\frac{3}{4}a_1 + \frac{3}{4}a_2 - \frac{3}{2}a_\lambda \bigg) \bigg\} \\ \beta_2 &= 2a_2^2 \bigg\{ \dots + \left(\frac{1}{4} + \frac{n_G}{6}\right) a_1 + \dots + 2n_G a_3 \dots + a_t \bigg[-\frac{3}{4} - \dots \bigg] + a_\lambda \bigg(\frac{1}{4}a_1 + \frac{3}{4}a_2 - \frac{3}{2}a_\lambda \bigg) \bigg\} \\ \beta_3 &= 2a_3^2 \bigg\{ \dots + \frac{11n_G}{36}a_1 + \frac{3n_G}{4}a_2 + \dots + a_t \bigg[-1 - \dots \bigg] \bigg\} \\ \beta_t &= 2a_t \bigg\{ \frac{9}{4}a_t - 4a_3 - \frac{17}{24}a_1 - \frac{9}{8}a_2 + 3a_\lambda^2 - 6a_t a_\lambda - \dots \bigg\} \\ \beta_\lambda &= \frac{9}{16}a_2^2 - \frac{9}{2}a_\lambda a_2 + \frac{3}{16}a_1^2 - \frac{3}{2}a_\lambda a_1 + \frac{3}{8}a_1 a_2 + 12a_\lambda^2 + 6a_\lambda a_t - 3a_t^2 \end{split}$$

TODO part after all known constraints

$$\beta_{AB}^{(4)} = \sum_{n=1}^{202} \left(\mathfrak{g}_{n}^{(4)} \cdot \bigwedge^{A} (n) \bigwedge^{B} \right), \quad \beta_{aij}^{(3)} = \sum_{n=1}^{308} \left(\mathfrak{y}_{n}^{(3)} \cdot \bigwedge^{A} (n) \bigwedge^{J} \right)$$

- WCC at the 4-3-2 order are quite powerfull and provide us with 128+133 constraints
 [Poole, Thomsen'19]
- More constrints from three-loop Yukawa beta-function with matrix couplings [Bednyakov, AP, Velizhanin'14]
- 2HDM three-loop beta-functions [Herren, Mihaila, Steinhauser'17]
- 4-loop gauge [Bednyakov, AP'15, Zoller'15, Davies et al.'19]
- What is left is to fix 11 coefficients in four-loop gauge beta function and 14 in three-loop Yukawa

Toy models idea

- Calculations in SM and 2HDM are too complicated to consider its generalisations with more fields and interactions
- Since we have access to the most general ansatz construct unphysical, but easy to implement in DIANA models

Toy models workflow

MI

$$\mathcal{L}_{M1} = -\frac{1}{2g_i^2} \text{Tr}(F^i_{\mu\nu}F^i_{\mu\nu}) + (D_\mu\phi)^{\dagger}_{\alpha\rho}(D_\mu\phi)_{\alpha\rho} - \frac{\lambda_1}{2}(\phi^{\dagger}_{\alpha\rho}\phi_{\alpha\rho})(\phi^{\dagger}_{\beta\sigma}\phi_{\beta\sigma}) - \frac{\lambda_2}{2}(\phi^{\dagger}_{\alpha\rho}\phi_{\alpha\sigma})(\phi^{\dagger}_{\beta\sigma}\phi_{\beta\rho})$$

• $SU(n_1) \times SU(n_2)$ version of QCD with "scalar quarks"

M2

$$\mathscr{L}_{M2} = -\frac{1}{4g^2} F^a_{\mu\nu} F^a_{\mu\nu} + i\bar{Q}\gamma^{\mu}D_{\mu}Q + i\bar{u}_R\gamma^{\mu}\partial_{\mu}u_R + \frac{1}{2}(\partial_{\mu}s)^2 + |D_{\mu}h|^2 - y_s\bar{Q}Qs - y_u [(\bar{Q}h)u_R + h.c.] - \frac{\lambda_s s^4}{24} - \frac{\lambda_{sh}}{2}s^2(h^{\dagger}h) - \frac{\lambda_h}{2}(h^{\dagger}h)^2$$

• SU(n) gauge theory with singlet fermion and singlet scalar

M3

$$\mathcal{L}_{M3} = -\frac{1}{2g_i^2} \operatorname{Tr}(F^i_{\mu\nu}F^i_{\mu\nu}) + \operatorname{Tr}[(D_\mu\phi_i)(D_\mu\phi_i)] + i\bar{\Psi}\gamma_\mu(D_\mu\Psi) - y_i \left[\bar{\Psi}\phi_i\Psi + \text{h.c.}\right] - \frac{\lambda_{ij}}{8} \operatorname{Tr}(\phi_i\phi_i) \operatorname{Tr}(\phi_j\phi_j) - \frac{\lambda_i}{24} \operatorname{Tr}(\phi_i\phi_i\phi_i\phi_i)$$

• $SU(n_1) \times SU(n_2) \times SU(n_3)$ with adjoint scalars

M4

$$\begin{aligned} \mathscr{L}_{M4} &= -\frac{1}{2g^2} (F_{\mu\nu}F_{\mu\nu}) + |D_{\mu}h|^2 + \frac{1}{2} (\partial_{\mu}s)^2 + i\bar{\Psi}_i\gamma_{\mu}(D_{\mu}\Psi_i) + i\bar{\psi}\gamma_{\mu}(D_{\mu}\psi) \\ &- \left[(\mathbf{y}_1)_{ij}s\bar{\Psi}_iP_R\Psi_j + (\mathbf{y}_2)_ih\bar{\Psi}_iP_R\psi + (\mathbf{y}_3)_ih^*\bar{\psi}P_R\Psi_i + \mathbf{y}_4s\bar{\psi}P_R\psi + h.c. \right] \\ &- \frac{\lambda_s s^4}{24} - \frac{\lambda_{sh}}{2}s^2(h^{\dagger}h) - \frac{\lambda_h}{2}(h^{\dagger}h)^2 \end{aligned}$$

• U(1) model with charged and neutral Higgs

Summary of unknown coefficients fixing

Type of the beta function		Gauge		Yukawa	
Number of equations and unknowns		$r = \mathbf{n} + c$	u _g	$r = \mathbf{n} + c$	u _ŋ
Initial number of unknown coefficients		-	202	-	308
Weyl Consistency Conditions		I28+0	74	133+0	175
Four-loop SM gauge beta functions		<mark>63</mark> +84	11	-	
Three-loop matrix Yukawa beta functions in the SM		-		128+17	47
Three-loop matrix Yukawa beta functions in THDM		-		33 +213	14
Four-loop QCD beta function for general group		2+11	9	-	
$SU(n_1) \times SU(n_2)$ gauge theory	(MI)	5 +25	4	-	
SU(n) gauge theory	(M2)	2 +55	2	<mark>4</mark> +76	10
$SU(n_1) \times SU(n_2) \times SU(n_3)$ gauge theory	(M3)	-		<mark>9</mark> +89	Ι
U(1) gauge theory	(M4)	-		1+199	0
Constraints from symmetric T_{IJ}		<mark>2</mark> +8	0	0 -	
Final number of unknowns			0		0

- Several cross checks stemming from different models
- Validation of the conjecture about symmetric T_{IJ} , part of WCC

Application to 2HDM and NHDM at 4-loops

- Compact result for 2HDM model and NHDM generalisation
- All fermion indices are contracted in Yukawa matrices traces
- Up to 3 traces at four-loop order have form

 $\operatorname{Tr}[Y_a \dots Y_a \dots Y_b \dots] \cdot \operatorname{Tr}[Y_c \dots Y_c \dots Y_b \dots] \cdot \dots$

 Four-loop 2HDM result naturally extends three-loop 2HDM resuls for Yukawa to 4-3-2 running [Herren, Mihaila, Steinhauser'17]

Conclusion

- Extensive use of already known results in SM, 2HDM and from WCC reduced the problem to fixing of the small number of numerical coefficients in general ansatz for beta-functions
- Combination of the standard workflow for the direct calculation in toy models with RGBeta for efficient manipulation of the general model ansatz allows to fix all remaining coefficients at 4-loops for gauge and at 3-loops for Yukawa
- All our results confirmed two days ago by Davies, Herren and Thomsen in arXiv:2110.05496

Thank you for attention!