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Introduction

Focus of this talk: homogeneous isotropic, spatially flat Universe.

Non-singular models:

Bounce

Start from slowly contracting Universe (H < 0), then contraction
rate increases, energy density builds up, at some moment of time
contraction terminates (bounce), Universe starts to expand (H > 0).
At some point conventional hot epoch (or inflation) begins.



Genesis
Creminelli, Nicolis, Trincherini’ 2010

Start from Minkowski, empty space (H = 0), then energy density
builds up, Universe starts to expand (H > 0), expansion accelerates.
At some point conventional hot epoch (or inflation) begins.



Motivation
Curiuosity. Always good to have alternatives even to
compelling scenarios like inflation.

No initial singularity.

Horizon, curvature problems “solved” by assumption about
initial state.
Especially with ekpyrotic (slow) contraction

Ijjas, Pretorius, Steinhardt et. al. ’2020-21

Very long prehistory without matter energy density =⇒ useful
for relaxing the cosmological constant

V.R. ’99;

Mukohyama, Randall ’2003

DRAWBACK

Generation of (nearly) flat power power spectrum of scalar
perturbations not so automatic as compared to in inflation



Obstacle in classical GR (if spatial curvature negligible): both
bounce and genesis need exotic matter which violates the Null
Energy Condition,

i.e. has p <−ρ ; where ρ = T 0
0 , energy density; p = T 1

1 = T 2
2 = T 3

s ,
effective pressure.

If the NEC holds: a combination of Einstein equations
(spatially flat):

dH

dt
=−4πG(ρ + p)

Hubble parameter always decreases. No bounce, no genesis.

Penrose theorem for expanding Universe: there was a
singularity in the past, H = ∞.



NEC is not violated in conventional field theories

with Lagrangians involving first derivatives only.
Dubovsky, Gregoire, Nicolis, Rattazzi’ 2006

Buniy, Hsu, Murray’ 2006

NEC-violation in theories of this sort:

Either ghosts: both kinetic an gradient terms have wrong sign.
Hyperbolic equation of motion, but negative energies ⇐⇒
ghosts: E =−

√

p2 +m2 Catastrophic vacuum instability

Or gradient instabilities: only gradient term has wrong sign.
Elliptic equation of motion =⇒ gradient instability

E2 =−(p2 +m2) =⇒ δπ ∝ e|E|t

Also catastrophic



Horndeski and p <−ρ

Twist: scalar-tensor theories with second derivatives in the
Lagrangian.

Danger: higher order equations of motion =⇒ extra degrees of
freedom = Ostrogradsky ghosts

Not necessarily!

Way out # 1: Horndeski Horndeski’ 1974

aka Euler hierarchies, aka generalized Galileons, aka KGB, aka generalized Fab

Four

Second derivatives in Lagrangian, second order field
equations

Simplest case: Creminelli, Nicolis, Trincherini’ 10, Deffayet, Pujolas,

Sawicki, Vikman’ 10, Kobayashi, Yamaguchi, Yokoyama’ 10

L =− 1

16πG
R+F(π,X)−K(π,X)2π

where again X = (∂π)2.

Explicit examples of stable NEC-violation.



Early stages of genesis/period around bounce can be made healthy.

However, things are not so simple. NO-GO.

“Complete cosmologies”: −∞ < t <+∞

Explicit examples of genesis (or bounce) with Horndeski:
either Big Rip singularity in future, π = ∞, H = ∞ at t < ∞

Creminelli, Nicolis, Trincherini ’2010

or gradient/ghost instability
Cai, Easson, Brandenberger ’2012; Koehn, Lehners, Ovrut ’2014;

Pirtskhalava, Santoni, Trincherini, Uttayarat ’2014; Qiu, Wang ’2015;

Kobayashi, Yamaguchi, Yokoyama ’2015; Sosnovikov ’2015

Can one avoid instability?

No-go in Horndeski! Libanov, Mironov, V.R.’ 16; Kobayashi’ 16



General Horndeski theory

Require: both “Einstein” equations and π-field equation second order

Four arbitrary functions of π and X : F ≡ G2; K ≡ G3; G4; G5

Horndeski’ 1974; Deffayet, Esposito-Farese, Vikman’ 09

L =F(π,X)−K(π,X)2π

+G4(π,X)R+G4,X ·
[

(2π)2 − (∇µ∇νπ)2
]

+G5 ·Gµν∇µ∇νπ − 1

6
G5,X ·

[

(2π)3 −32π · (∇µ∇νπ)2 +2(∇µ∇ν π)3
]

Modified gravity (scalar-tensor).

NB: always in Jordan frame.



No-go theorem for genesis in Horndeski: gradient/ghost instability
at some stage (which may be quite late)

Libanov, Mironov, V.R.’ 16; Kobayashi’ 16

Choose unitary gauge δπ = 0.

ds2 = N2dt2 −a2e2ζ (δi j +hi j +
1

2
hikhk j)(N

idt +dxi)(N jdt +dx j)

Dynamical variables: transverse traceless hi j and ζ (lapse δN and

shift Ni are not dynamical, as usual).

Upon solving for constraints, find quadratic Lagrangians for
perturbations

LS = GS ζ̇ 2 −a−2
FS (∂iζ )

2 , LT = GT ḣi j
2 −a−2

FT (∂khi j)
2

NB: GT , FT = effective M2
Pl.

Stable background ⇐⇒ GT ,FT ,GS ,FS> 0.



To simplify formulas (but not outcome): G5 = 0. Tensor sector:

GT = 2G4 −4G4X X ,

FT = 2G4

Scalar sector:

GS =
ΣGT

2

Θ2
+3GT ,

FS =
1

a

dξ

dt
−FT ,

ξ =
aGT

2

Θ
.

Where

Θ =−KX X π̇ +2G4H −8HG4X X −8HG4XX X2 +G4π π̇ +2G4πX X π̇

Σ = FX X +2FXX X2 +12HKX X π̇ +6HKXX X2π̇ −Kπ X −KπX X2

−6H2G4 +42H2G4X X +96H2G4XX X2 +24H2G4XXX X3 −6HG4π π̇

−30HG4πX X π̇ −12HG4πXX X2π̇



Key relation (by explicit calculation in general Horndeski)

dξ

dt
= a(t)(FS +FT )

ξ =−a(t)GT
2(t)

Θ(t)

where Θ(t) =−2HG4 + π̇XKX + . . . , a complicated expression.

Main property: ξ never crosses zero (Θ = ∞ is a singularity).

ξ (t f )−ξ (ti) =
∫ t f

ti

dt a(t)(FS +FT )

Impossible for FS > 0, FT > 0, and

∫ t f

−∞
dt a(t)(FS +FT ) = ∞ ,

∫ +∞

ti

dt a(t)(FS +FT ) = ∞

Recall that a(t)→ ∞/const as t →−∞ and a(t)→ ∞ as t →+∞ for
bounce/genesis No-go



ξ (t)−ξ (0) =
∫ t

0
dt a(t)(FS +FT ) =⇒ ξ (t)→+∞ as t →+∞

ξ (0)−ξ (t) =
∫ 0

t
dt a(t)(FS +FT ) =⇒ ξ (t)→−∞ as t →−∞

Thus, ξ (t) crosses zero, QED.

Argument intact in presence of extra matter (obeying NEC)
which interacts with Horndeski sector only gravitationally

Extends to Horndeski theory with multiple (Horndeski or
conventional) scalars

Kolevatov, Mironov ’2016

Akama, Kobayashi ’2017



Way out # 1: strong gravity in the past

Within Horndeski theory, classical stability (absence of gradient
instabilities and ghosts) requires

∫ t

−∞
dt a(t)(FS +FT )< ∞ .

GT ,FT ,GS ,FS→ 0 as t →−∞,
Kobayashi ’2016; Ijjas, Steinhardt ’2016

No-go theorem does not work.

But gravity tricky as t →−∞: effective Planck mass vanishes.

Strong coupling?

Examples:

GT ,FT ,GS ,FS=
1

(−t)2µ
as t →−∞.



Can one trust classical field theory treatment of cosmological
evolution?

Energy scale of classical evolution Eclass = H, Ḣ/H = (−t)−1 → 0

How does it compare with strong coupling scales Estrong

inferred from interactions of ζ and hi j?

Classical treatment of evolution legitimate
for Estrong >> Eclass as t →−∞.

Example (part of the story): tensor sector up to cubic terms.
At given moment of time rescale spatial cordinates to set a = 1

(equivalently, work in terms of physical spatial momenta ~p =~k/a).

Then (note that GT = FT )

S
(2,3)
hh =

∫

d4x

(

FT ḣi j
2 −FT (∂khi j)

2 +
FT

4

(

hikh jl −
1

2
hi jhkl

)

∂k∂lhi j

)

To figure out strong coupling energy scale, canonically normalize

hi j = h
(c)
i j /

√

FT



S
(2,3)
hh =

∫

d4x

(

˙
h
(c)
i j

2

− (∂kh
(c)
i j )

2 +
1

4
√

FT

(

h
(c)
ik h

(c)
jl − 1

2
h
(c)
i j h

(c)
kl

)

∂k∂lh
(c)
i j

)

Dimension-5 operator “suppressed” by 1/
√

FT ⇐⇒
quantum strong coupling energy scale Estrong =

√
FT ∝ (−t)−µ

Estrong → 0 as t →−∞, but Estrong ≫ Eclass = (−t)−1 for µ < 1.

Healthy early bounce stage within classcal field theory at weak
coupling.

This extends to scalar plus tensor sectors and all orders in
perturbation theory. Viable scenario.

Ageeva, Evseev, Melichev, V.R.’ 18, 20;

Ageeva, V.R., Petrov’ 20, 21

Overall picture: Universe starts at very low quantum gravity scale
Estrong ∝ |t|−α but expands so slowly that Eclass ≪ Estrong. Standard
Model scales are above Estrong. Gravity is the strongest force.

Similar construction works for genesis



Complete cosmologies

Intelligent design: proof by example
Dubbed “Inverse method” by Ijjas, Steinhardt’ 2016

Choose background π(t) = t, no loss of generality (field
redefinition).

Then X = (∂π)2 = 1.

Field equations and stability conditions involve Lagrangian
functions F , K, G4 and their X-derivatives FX , FXX , etc, all at
π(t) = t, X = 1.

These are yet undetermined independent functions of time
f0(t) = F(π(t),X = 1), f1(t) = FX (π(t),X = 1), etc..

Choose your favorite H(t).



In particular, theory at late times becomes GR + conventional

massless scalar field φ = (2/3)1/2 logπ (“kination”),

Cook up Lagrangian functions in such a way that

Field equations are satisfied

Stability conditions are satisfied at all times

Classical field theory description of background is reliable
at all times, including t →−∞

All this can be done for bounce (and also genesis)
Ageeva, Petrov, V.R.’ 2021

Moreover, one can design a model in such a way that

Tensor and scalar perturbations are subluminal at all times (or
luminal, if one wishes so)



Bounce to kination
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Yet another approach

Horndeski is not the most general scalar-tensor theory with tensor +
one scalar modes =⇒ No Ostrogradsky ghost

Variation of action may give higher order field equations, but
they may combine into second order equations. Degenerate
Higher-Order Scalar Tensor theories, DHOST

Langlois, Noui’ 16; Crisostomi, Koyama, Tasinato’ 16

Relatively simple subclass: “beyond Horndeski” theories

Zumalacárregui, Gacia-Bellido’ 2014; Gleyzes, Langlois, Piazza, Vernizzi’ 2014

Example of additional (to Horndeski) term

F4(π,X)εµνλρε
µ ′ν ′λ ′

ρ π,µπ,µ ′π;νν ′π;λλ ′

Way to understand (sometimes): disformal transformation

gµν → Ω(π,X)gµν+Λ(π,X)∂µπ∂νπ

Horndeski → beyond Horndeski

NB: This is formal trick: Ω, Λ may be singular



No-go theorem no longer holds
Effective field theory: Cai et.al.’ 2016, Creminelli et.al.’2016

Covariant formalism: Kolevatov et.al.’ 2017, Cai, Piao’ 2017

One again has

dξ

dt
= a(t)(FS +FT )

but now

ξ =−a(t)GT (GT +2F4X2)

Θ(t)

can cross zero.

NB: Θ = 0 not a problem, gauge artifact
Ijjas’ 17;

Mironov, V.R., Volkova’ 18

Concrete models again by intelligent design.



However, there is still an issue to worry about: superluminality.

Theory with superluminal excitations cannot descend from healthy
Lorentz-invariant UV-complete theory

Adams et. al.’ 2006

Not an issue in DHOST theories per se.

But things change once one allows for extra field(s) (“matter”)

one of the modes is always superluminal

unless a special non-linear constraint is imposed on functions in
Lagrangian

Mionov, Volkova, VR’ 2020



To conclude

Constructing complete (−∞ < t <+∞) non-singular cosmology
(bounce, genesis) is difficult.

Within scalar-tensor gravity: non-trivial kinetic/gradient
terms
bounce epoch, early genesis per se not so prolematic

however, almost all complete cosmologies plagued with
instability (“No-go”)

Way out #1:

Strong gravity in the past; effective Planck mass tends to 0 as
t →−∞. “Gravity as the strongest force”.

Classical field theory treatment of background evolution
can be rendered legitimate, nevertheless.

Healthy bounce and genesis cosmologies constructed in this
framework

Whether realistic scalar (and tensor) perturbations may be
generated without inflation, remains to be seen.



Way out # 2:

Theories with even more complicated Lagrangians involving
second derivatives: beyond Horndeski, DHOST.

Absence of Ostrogradsky ghost, catastrophic instabilities
and superluminality imposes strong (non-linear!)
constraints on functions in Lagrangian.

Is the price too high?



Instead of conclusion: where else DHOST may be instrumental?

Lorentzian wormholes

Static wormhole ⇐⇒ Bouncing Universe

⇐⇒

No-go in NEC-preserving theories

No-go in Horndeski: no stable, static, spherically symmetric
wormholes: always ghosts.

V.R.’ 16; Evseev, Melichev’ 18

Not obviously impossible in DHOST
Mironov, V.R., Volkova’ 18; Francolini et. al.’ 18

Studying stability HUGELY difficult.



Creation of a universe in the laboratory

Question raised in mid-80’s, right after invention of
inflationary theory

Berezin, Kuzmin, Tkachev’ 1984; Guth, Farhi’ 1986

Idea: create, in a finite region of space, inflationary initial
conditions =⇒ this region will inflate to enormous size and
in the end will look like our Universe.

Do not need much energy: pour little more than Planckian
energy into little more than Planckian volume.

If NEC holds, no way: initial singularity

Guth, Farhi’ 1986; Berezin, Kuzmin, Tkachev’ 1987

How about DHOST theories?

Amazingly, many questions of principle still
not answered. Ahead: more to understand.



Backup



No-go theorem for theories with Lagrangians involving first
derivatives of fields only (and minimal coupling to gravity)

Dubovsky, Gregoire, Nicolis, Rattazzi’ 2006

Buniy, Hsu, Murray’ 2006

L = F(X IJ,π I)

with X IJ = ∂µπ I∂ µπJ =⇒

Tµν = 2
∂F

∂X IJ
∂µπ I∂νπJ −gµνF

In homogeneous background

T00 ≡ ρ = 2
∂F

∂X IJ
X IJ −F

T11 = T22 = T33 ≡ p = F

and

ρ + p = 2
∂F

∂X IJ
X IJ = 2

∂F

∂X IJ
π̇ Iπ̇J



NEC-violation: matrix ∂F/∂X IJ
c non-positive definite. But

Lagrangian for perturbations π I = π I
c +δπ I

Lδπ = AIJ ∂tδπ I ·∂tδπJ − ∂F

∂X IJ
c

∂iδπ I ·∂iδπJ + . . .

Gradient instabilities and/or ghosts

NB. Loophole: ∂F/∂X IJ
c degenerate.

Higher derivative terms (understood in effective field theory sense)
become important and help.
Ghost condensate



Simple NEC-violating Horndeski: scale-invariant model,
π(x)→ π ′(x) = π(λx)+ lnλ

L = F(Y ) · e4π +K(Y ) ·2π · e2π

2π ≡ ∂µ∂ µπ , Y = e−2π · (∂π)2

Homogeneous solution in Minkowski space (attractor)

eπc =
1√

Y∗ |t|
, t < 0

Y ≡ e−2πc · (∂µπc)
2 = Y∗ = const, a solution to

Z(Y∗)≡−F +2Y∗FY −2Y∗K +2Y 2
∗ KY= 0

FY = dF/dY .



Perturbations about homogeneous Minkowski solution

π(xµ) = πc(t)+δπ(xµ)

Quadratic Lagrangian for perturbations:

L(2) = e2πcF (∂tδπ)2 −G (~∇δπ)2 +W (δπ)2

Absence of ghosts: F = ZY ≡ dZ/dY > 0 at Y = Y∗, no problem.

NEC-violation and absence of gradient instabilities:

ρ + p = e4πc (FY −2K +Y∗KY ) ·2Y∗ < 0

G = e2πc (FY −2K +4Y∗KY ) > 0

Easy to arrange.

NB: ρ = 0, p < 0 p → 0 as t →−∞

When coupled to gravity =⇒ early stage of Genesis.
Creminelli, Nicolis, Trincherini’ 10,



No-Go

Even if Θ = 0 at some time ⇐⇒ ξ = ∞, there is necessarily
ξ -crossing:

Side remark: Θ-crossing Θ = 0 at some t is not a problem by itself.
FS ,GS = ∞, but solutions for ζ remain finite. Also: no singularity
in equations in Newtonian gauge

Ijjas’ 17; Mironov, V.R., Volkova’ 18



DHOST with additional scalar field

Additional minimally coupled scalar: Lχ = (∂ χ)2

New featue: DHOST pertutbations kinetically mix with δ χ if χ̇c 6= 0

in background:
quadratic action reads (modulo terms with less than two derivatives)

L
(2) scalar
π+χ = GAB u̇Au̇B − 1

a2
FAB ∂i uA∂i uB

where A,B = 1,2, u1 = ζ , u2 = δ χ ,

GAB =





GS χ̇cg

χ̇cg 1



 , FAB =





FS χ̇c f

χ̇c f 1



 ,

g, f (π,X) = combinations of functions in DHOST Lagrangian.

One of the modes superluminal unless g = f

g = f =⇒ Very special DHOST theory (not beyond Horndeski),
non-linear relations between terms in Lagrangian
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