

JOINT INSTITUTE FOR NUCLEAR RESEARCH BOGOLYUBOV LABORATORY OF THEORETICAL PHYSICS

RUSSIA, DUBNA R*

202

The Conference is dedicated to the 70-th anniversary of 7 scientists who graduated from the same academic group of Physics Department of Moscow State University in 1974 and keep working in the field of Quantum field theory and Particle physics

BELOKURO VI ADIMIR MSU. Moscow KIT Karlsruhe

JINR. Dubna

11-14 OCTOBER, 2021

VLADIMIRO\ ΔΙ ΕΧΕΥ IINR Dubn

Renormalization theory • Multiloop calculations • Amplitudes • Perturbative QCD • Path integrals • Effective theories • Physics Beyond the SM • Cosmology and Dark Matter • Gravity

ORGANIZING COMMITTEE akov (JINR, Dubna) — chairman

A.Bednyakov (JINR, Dubna) – scientific secretary indico.jinr.ru/e/qft A.Pikelner (JINR, Dubna) A.Onishchenko (JINR, Dubna) O.Korotchik (JINR, Dubna) - secretary

CONTACTS etneor.jinr.ru

 $arphi_{\pi}(\xi,\mu^2) = (1-\xi^2) \sum_{n=0}^{\infty} a_n \frac{C_n^{3/2}(\xi)}{(\ln\mu^2/\Lambda^2)^{\gamma_n/2\beta_0}}$

ADVANCES IN QUANTUM FIELD THEORY Dubna 2021

Mikhail Shifman

William I. Fine Theoretical Physics Institute, University of Minnesota

Bringing Yang-Mills Theory Closer to Quasiclassics

$$\beta(\alpha) = -\left(n_b - \frac{n_f}{2}\right) \frac{\alpha^2}{2\pi} \left[1 - \frac{(n_b - n_f)\alpha}{4\pi}\right]^{-1}$$

 $\mathcal{N} = 4 \rightarrow n_b = \frac{n_f}{2} = 4N$

In super-Yang-Mills the full β functions is completely determined by quasi classics, e.g.

 n_b and n_f are the numbers of the instanton zero modes

Why EXACT? All bosonic and fermionic NON-zero modes exactly CANCEL each other!

 $\beta(\alpha) = \frac{d}{d\log M_{\rm uv}}\alpha = -\beta_1 \frac{\alpha^2}{2\pi} - \beta_2 \frac{\alpha^3}{4\pi^2} + \dots$

What is to be added To cancel this???

The simplest example of exact "supersymmetry"

$$\mathscr{L}_{\varphi\Phi} = \partial_{\mu}\bar{\varphi}\partial^{\mu}\varphi + (\bar{\varphi}\varphi)^{2} + \partial_{\mu}\bar{\Phi}\partial^{\mu}\Phi + 2(\bar{\varphi}\varphi)(\bar{\Phi}\Phi)$$

Regular complex field

$$\mathcal{J}^{\mu} = \left(\varphi \ \overline{\partial}^{\mu} \ \Phi + \mathrm{H.c.}\right), \qquad \partial_{\mu} \mathcal{J}^{\mu} = q$$
$$\{\mathcal{Q}\mathcal{J}^{\mu}\} = -i \sum_{\phi=\varphi, \Phi} \phi \ \partial^{\mu} \ \overline{\phi} \qquad \longleftarrow$$

A_{μ}^{a} and $(c^{a}$ plus $\Phi^{a})$ form two doublets of a global SU(2)

Phantom

 $\varphi(\partial^2 \Phi) - (\partial^2 \varphi)\Phi = 2\varphi^2 \bar{\varphi} \Phi - 2\varphi^2 \bar{\varphi} \Phi + H.c. = 0.$

NOT Hamiltonian, graded global SU(2)

The theory is not empty!

- In Yang Mills theory with one phantom the β function is quasiclassical at least in first and second loops;
- Limiting the physical sector to amplitudes in which Φ^a propagate only in loops

Does NOT vanish; φ dominates!

Conclusion/Conjecture

