

ADVANCES IN QUANTUM FIELD THEORY Dubna 2021

Mikhail Shifman

William I. Fíne Theoretical Physics Institute, University of Mínnesota

Bringing Yang-Mills Theory Closer to Quasiclassics

In super-Yang-Mills the full β functions is completely determined by quasi classics, e.g.

$$
\beta(\alpha)=-\left(n_{b}-\frac{n_{f}}{2}\right) \frac{\alpha^{2}}{2 \pi}\left[1-\frac{\left(n_{b}-n_{f}\right) \alpha}{4 \pi}\right]^{-1}
$$

n_{b} and n_{f} are the numbers of the instanton zero modes

$$
\left.\begin{array}{rl}
\mathcal{N} & =1 \rightarrow n_{b}=2 n_{f}=4 N \\
\mathcal{N} & =2 \rightarrow n_{b}=n_{f}=4 N \\
\mathcal{N} & =4 \rightarrow n_{b}=\frac{n_{f}}{2}=4 N
\end{array}\right\} n_{f}=\mathcal{N} \times 2 N
$$

$\mathcal{N}=1, \quad S_{\text {inst }}=\frac{2 \pi}{\alpha_{o}}$

$$
d \mu_{\mathrm{inst}} \propto \underbrace{S_{\mathrm{inst}}^{2 N} M_{\mathrm{uv}}^{4 N}} \underbrace{\frac{1}{S_{\mathrm{inst}}^{N} M_{\mathrm{uv}}^{N}}} e^{-S_{\mathrm{inst}}} \propto M_{\mathrm{uv}}^{n_{b}-\frac{n_{f}}{2}}\left(\frac{1}{\alpha_{0}}\right)^{\frac{n_{b}-n_{f}}{2}} e^{-S_{\mathrm{inst}}}
$$

boson : $\frac{M_{\mathrm{uv}}^{2}}{\alpha_{0}}$ per pair of modes fermion : $\frac{\alpha_{0}}{M_{\mathrm{uv}}}$ per pair of modes

Why EXACT? All bosonic and fermionic NON-zero modes exactly CANCEL each other!

Let us try to do the same in pure (non)-SUSY Yang-Mills

$$
d \mu_{\text {inst }}=\text { const } \times \int \frac{d^{4} x_{0} d \rho}{\rho^{5}}\left(M_{\mathrm{uv}} \rho\right)^{4 N}\left(\frac{8 \pi^{2}}{g^{2}}\right)^{2 N} \exp \left(-\frac{8 \pi^{2}}{g^{2}}+\frac{\left.\Delta_{\mathrm{gl}}+\Delta_{\mathrm{gh}}\right)}{\text { Quantum part }}\right.
$$

$$
\frac{d}{d \log M_{\mathrm{uv}}}\left(4 N \log M_{\mathrm{uv}}-2 N \log g^{2}-\frac{8 \pi^{2}}{g^{2}}\right)=0
$$

First ignore

$$
\begin{gathered}
\beta(\alpha)=\frac{d}{d \log M_{\mathrm{uv}}} \alpha=-\beta_{1} \frac{\alpha^{2}}{2 \pi}-\beta_{2} \frac{\alpha^{3}}{4 \pi^{2}}+\ldots \\
\beta_{1}=4 N, \quad \beta_{2}=8 N^{2}
\end{gathered}
$$

What is to be added To cancel this???

Background Field Method

$$
A_{\mu}^{a} \equiv\left(A_{\mu}^{a}\right)_{\mathrm{ext}}^{+a_{\mu}^{a}}
$$

Charge interaction of quantum gluons; 4 dof

Magnetic interaction of quantum gluons $\rightarrow \mathrm{zm}$

Ghosts; -2 dof

Phantom $=$
2nd ghost $\rightarrow-2$ dof

A_{μ}^{a} and (c^{a} plus Φ^{a}) form two doublets of a global $S U(2)$

The simplest example of exact "supersymmetry"

$$
\mathscr{L}_{\varphi \Phi}=\partial_{\mu} \bar{\varphi} \partial^{\mu} \varphi+(\bar{\varphi} \varphi)^{2}+\partial_{\mu} \bar{\Phi} \partial^{\mu} \Phi+2(\bar{\varphi} \varphi)(\bar{\Phi} \Phi)
$$

$$
\begin{array}{ll}
\mathscr{J}^{\mu}=\left(\varphi \stackrel{\leftrightarrow}{\partial^{\mu}} \Phi+\mathrm{H} . \mathrm{c} .\right), & \partial_{\mu} \mathscr{\mathscr { F }}^{\mu}=\varphi\left(\partial^{2} \Phi\right)-\left(\partial^{2} \varphi\right) \Phi=2 \varphi^{2} \bar{\varphi} \Phi-2 \varphi^{2} \bar{\varphi} \Phi+\mathrm{H} . \mathrm{c} .=0 \\
\left\{\mathscr{Q} \mathscr{J}^{\mu}\right\}=-i \sum_{\phi=\varphi, \Phi} \phi \partial^{\mu} \bar{\phi} \quad \longleftarrow \text { NOT Hamiltonian, graded global SU(2) }
\end{array}
$$

The theory is not empty!

_ Does NOT vanish; φ dominates!

Conclusion/Conjecture

- In Yang - Mills theory with one phantom the β function is quasiclassical at least in first and second loops;
- Limiting the physical sector to amplitudes in which Φ^{a} propagate only in loops we get a theory which is probably unitary ????????

